算法训练 结点选择

题目:
问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。

样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5

样例输出
12

样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
数据规模与约定

对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。

看过这道题,我们大概可以知道,这是一道和树有关的问题,那么我们需要考虑的就是如何去遍历树?很明显,我们需要用到DFS。仔细读这道题,然后我们就可以得到这还需要用到动态规划,由此,我们做这道题,解题方案也就是树形动态规划了!

既然要用动态规划,构造状态转移方程是必不可少了!
对于叶子结点:
dp[k][0] = 0;
dp[k][1] = k点权值;
对于非叶子结点:
dp[i][0] = max(dp[j][0], dp[j][1]); (j是i的儿子)
dp[i][1] = i点权值 + dp[j][0]; (j是i的儿子)
最大权值即为:
max(dp[0][0], dp[0][1])。(要么不包括根结点,要么包括根结点)

代码如下:

#include <stdio.h>
#include <string.h>
#define _Max 100010
#define max(a, b) a > b ? a : b

struct point
{
    int v, next;   //v指向这条边的另一个结点(父结点),next指向子结点
} edge[_Max * 2];  //一条边记录两次,分别以一个点做记录

int head[_Max];
int M;
int dp[_Max][2];

//添加一个边
void addEdge(int from, int to)
{
    //from结点
    edge[M].v = to;
    edge[M].next = head[from];    //为-1则定位叶结点,否则,指向另外一条边
    head[from] = M++;             //指向他的一条边,增加结点
    //to结点
    edge[M].v = from;
    edge[M].next = head[to];      //为-1则定位叶结点,否则,指向另外一条边
    head[to] = M++;               //指向他的一条边,增加结点
    return ;
}

//深度遍历,先深入到叶子结点,然后一层一层往上回升,一直到根结点,即第一个结点(初始pre为-1是因为根结点没有父结点,用-1表示)
void dfs(int x, int pre)
{
    int i = head[x], v;
    for (; i != -1; i = edge[i].next)  //i != -1说明有子结点,则遍历子结点,否则为叶子结点
    {
        v = edge[i].v;
        if (pre == v)  //如果指向的子结点和父结点重合,则说明这个结点是叶子结点,不需要进一步dp
        {
            continue;
        }
        dfs(v, x);     //x可以理解为父结点
        //深度遍历到最里面的叶子结点的父结点   如果父结点选择,则子结点不选择,否则子结点可能选择或者不选择,但是要比较两者哪个大选择哪个
        dp[x][1] += dp[v][0];                   //   父结点(选) += 子结点(不选)
        dp[x][0] += max(dp[v][0], dp[v][1]);    //   父结点(不选) += max(子结点(不选),子结点(选))
    }
    return ;
}
int main(int argc, const char * argv[])
{
    int i, n, s, t, tmp;
    scanf("%d", &n);
    M = 0;
    memset(head, -1, sizeof(head));   //初始化每个结点都是独立的没有子结点
    memset(dp, 0, sizeof(dp));
    //输入权值,并且记录在dp[i][1]上,i表示第i个结点,1代表取了这个结点
    for (i = 1; i <= n; i++)
    {
        scanf("%d", &dp[i][1]);
    }
    //输入边,并且添加edge,一个边添加两个edge
    for (i = 1; i < n; i++)
    {
        scanf("%d %d", &s, &t);
        addEdge(s, t);
    }
    dfs(1, -1);   //深度优先遍历,从第一个结点开始遍历
    tmp = max(dp[1][0], dp[1][1]);    //求出最大的权值和
    printf("%d\n", tmp);
    return 0;
}

具体的思路实现都注释了,希望可以帮助理解。
OVER!!!

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值