结论
整数运算x & (-x),当x为0时结果为0;x为奇数时,结果为1;x为偶数时,结果为x中2的最大次方的因子。
解析
&是按位与操作,即:
1 & 1 = 1, 1 & 0 = 0, 0 & 0 = 0。
因为负数的补码 = 正数的补码取反 + 1,因此若没有+1的存在, x & (-x)的结果就是0。
分析一下可知,该操作保留的是正数的最低有效bit。
任意一个数(不管奇偶),都可以表示成
2^a + 2^b + 2^c + ......
如果a是a、b、c......中的min,那么x & (-x) = 2^a。
奇数时,min = 0,所以x & (-x) = 1;0时,x & (-x) = 0;除零以外的偶数,x & (-x) = 2^a,这里2^a需要是x的所有因子中,最大的2的幂。