题目链接
题解
高精度乘法,使用FFT可以快速解决。
代码
#include <iostream>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
// FFT
/*
* HDU 1402 求高精度乘法
* A * B Problem Plus
*/
const double PI = acos(-1.0);
// 复数结构体
struct Complex
{
double x, y; // 实部和虚部 x + yi
Complex(double _x = 0.0, double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator - (const Complex &b) const
{
return Complex(x - b.x, y - b.y);
}
Complex operator + (const Complex &b) const
{
return Complex(x + b.x, y + b.y);
}
Complex operator * (const Complex &b) const
{
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
};
// 进行FFT和IFFT前的反转变换
// 位置i和(i二进制反转后的位置)互换
// len必须去2的幂
void change(Complex y[], int len)
{
int i, j, k;
for (i = 1, j = len / 2; i < len - 1; i++)
{
if (i < j)
{
swap(y[i], y[j]);
}
// 交换护卫小标反转的元素,i < j保证交换一次
// i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len / 2;
while (j >= k)
{
j -= k;
k /= 2;
}
if (j < k)
{
j += k;
}
}
return ;
}
// FFT
// len必须为2 ^ k形式
// on == 1时是DFT,on == -1时是IDFT
void fft(Complex y[], int len, int on)
{
change(y, len);
for (int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for (int j = 0; j < len; j += h)
{
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++)
{
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1)
{
for (int i = 0; i < len; i++)
{
y[i].x /= len;
}
}
}
const int MAXN = 200010;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN];
int sum[MAXN];
int main(int argc, const char * argv[])
{
while (cin >> str1 >> str2)
{
int len1 = (int)strlen(str1);
int len2 = (int)strlen(str2);
int len = 1;
while (len < len1 * 2 || len < len2 * 2)
{
len <<= 1;
}
for (int i = 0; i < len1; i++)
{
x1[i] = Complex(str1[len1 - 1 - i] - '0', 0);
}
for (int i = len1; i < len; i++)
{
x1[i] = Complex(0, 0);
}
for (int i = 0; i < len2; i++)
{
x2[i] = Complex(str2[len2 - 1 - i] - '0', 0);
}
for (int i = len2; i < len; i++)
{
x2[i] = Complex(0, 0);
}
// 求DFT
fft(x1, len, 1);
fft(x2, len, 1);
for (int i = 0; i < len; i++)
{
x1[i] = x1[i] * x2[i];
}
fft(x1, len, -1);
for (int i = 0; i < len; i++)
{
sum[i] = (int)(x1[i].x + 0.5);
}
for (int i = 0; i < len; i++)
{
sum[i + 1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2 - 1;
while (sum[len] <= 0 && len > 0)
{
len--;
}
for (int i = len; i >= 0; i--)
{
printf("%c", sum[i] + '0');
}
putchar('\n');
}
return 0;
}