51Nod-1414-冰雕

ACM模版

描述

描述

题解

一开始高估了这道题难度,一直在想从中发现规律( ̄┰ ̄*),结果,╮(╯_╰)╭,只好暴力解之……还真的过了,这里给出一种一般的暴力解法和一种略微优化的暴力解题思路。

代码

One:

//  常规暴力解法
#include <iostream>
#include <cstdio>

using namespace std;

const int MAXN = 2e4 + 10;

int T[MAXN];

int main(int argc, const char * argv[])
{
    int n;

    while (cin >> n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", T + i);
            sum += T[i];
        }
        int ans = sum;
        for (int i = 3; i <= n / 2; i++)
        {
            if (n % i)
            {
                continue;
            }
            int key = n / i;
            for (int j = 1; j <= key; j++)
            {
                sum = 0;
                for (int k = j; k <= n; k += key)
                {
                    sum += T[k];
                }
                if (sum > ans)
                {
                    ans = sum;
                }
            }
        }
        cout << ans << '\n';
    }

    return 0;
}

Two:

//  略微优化解法
#include <stdio.h>

#define MAXN 20000
#define INF 0x3f3f3f3f
#define MAX(a, b) ((a) > (b) ? (a) : (b))

int n;
int a[MAXN * 2];

int calc(int cnt, int step)
{
    int ans = -INF;
    int tmp;
    for (int i = 0; i < step; ++i)
    {
        tmp = 0;
        for (int j = 0; j < n; j += step)
        {
            tmp += a[i + j];
        }
        ans = MAX(ans, tmp);
    }
    return ans;
}

int main()
{
    int i, x, y;
    int ans = -INF;
    int tmp;
    scanf("%d", &n);
    for (i = 0; i < n; ++i)
    {
        scanf("%d", a + i);
        a[i + n] = a[i];
    }
    for (x = 1; x * x <= n; ++x)
    {
        if (n % x)  //  不能x等分或者n/x等分
        {
            continue;
        }
        y = n / x;
        if (x >= 3) //  x等分
        {
            tmp = calc(x, y);
            ans = MAX(ans, tmp);
        }
        if (y >= 3) //  y等分
        {
            tmp = calc(y, x);
            ans = MAX(ans, tmp);
        }
    }

    printf( "%d\n", ans );

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值