HDU-2833-WuKong

ACM模版

描述

描述

题解

很有趣的一道题……给定一个无向图,和两对起点终点,求两条最短路上的最多公共交点数。
可以dp+Floyd(代码One)搞搞,也可以dij+dfs(代码Two)搞搞,记忆化搜索,其实说白了都是dp。

代码

One:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int MAXN= 305;
const int INF = 0x3f3f3f3f;

int dp[MAXN][MAXN]; //  从点i到点j最短路上最多有多少个点
int map[MAXN][MAXN];
int ans,n,m;

void floyd()
{
    for (int k = 1; k <= n; k++)
    {
        for (int i = 1; i <= n; i++)
        {
            if (map[i][k] != INF && i != k)
            {
                for (int j = 1; j <= n; j++)
                {
                    if (i == j || j == k)
                    {
                        continue;
                    }
                    if (map[i][j] > map[i][k] + map[k][j])
                    {
                        map[i][j] = map[i][k] + map[k][j];
                        dp[i][j] = dp[i][k] + dp[k][j] - 1;
                    }
                    else if (map[i][j] == map[i][k] + map[k][j] && dp[i][j] < dp[i][k] + dp[k][j])
                    {
                        dp[i][j] = dp[i][k] + dp[k][j] - 1;
                    }
                }
            }
        }
    }
}

int solve(int s1, int e1, int s2, int e2)
{
    int res = 0;
    if (map[s1][e1] >= INF || map[s2][e2] >= INF)
    {
        return 0;
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (map[s1][i] + map[i][j] + map[j][e1] == map[s1][e1] &&
                map[s2][i] + map[i][j] + map[j][e2] == map[s2][e2])
            {
                res = max(res, dp[i][j]);
            }
        }
    }
    return res;
}

int main()
{
    while (scanf("%d%d", &n, &m) != EOF && (n | m))
    {
        int u, v, w;
        int s1, e1, s2, e2;
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                map[i][j] = INF;
                dp[i][j] = 2;
            }
            dp[i][i] = 1;
            map[i][i] = 0;
        }
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d%d", &u, &v, &w);
            map[v][u] = map[u][v] = min(map[u][v], w);
        }

        floyd();

        scanf("%d%d%d%d", &s1, &e1, &s2, &e2);
        printf("%d\n", solve(s1, e1, s2, e2));
    }

    return 0;
}

Two:

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int INF = 0x3f3f3f3f;
const int MAXN = 305;

int n;
int cost[MAXN][MAXN];
int lowcost[MAXN];
int lowcost_[MAXN];
int cnt[MAXN][MAXN];    //  记忆化,从点i到点j最短路上最多有多少个点
bool vis[MAXN];

void init()
{
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            cost[i][j] = INF;
        }
    }
    memset(cnt, -1, sizeof(cnt));
}

void dijkstra(int u, int lowc[])
{
    memset(vis, false, sizeof(vis));

    int mins, v = 0;
    for (int i = 1; i <= n; i++)
    {
        lowc[i] = cost[u][i];
    }
    lowc[u] = 0;
    vis[u] = true;
    while (1)
    {
        mins = INF;
        for (int j = 1; j <= n; j++)
        {
            if (!vis[j] && lowc[j] < mins)
            {
                mins = lowc[j];
                v = j;
            }
        }
        if (mins == INF)
        {
            break;
        }
        vis[v] = true;
        for (int j = 1; j <= n; j++)
        {
            if (!vis[j] && lowc[v] + cost[v][j] < lowc[j])
            {
                lowc[j] = lowc[v] + cost[v][j];
            }
        }
    }
}

int dfs(int a, int b)
{
    if (cnt[a][b] > -1)
    {
        return cnt[a][b];
    }
    int v = 0;
    if (a == b)
    {
        v++;
        for (int i = 1; i <= n; i++)    //  枚举第一条最短路的可以到达a的前一个点
        {
            if (lowcost[i] + cost[i][a] != lowcost[a])  //  i-a不是最短路上的边
            {
                continue;
            }
            for (int j = 1; j <= n; j++)//  枚举第二条最短路的可以到达b的前一个点
            {
                if (lowcost_[j] + cost[j][b] == lowcost_[b])
                {
                    v = max(v, dfs(i, j) + 1);
                }
            }
        }
    }
    for (int i = 1; i <= n; i++)        //  a往前走一步
    {
        if (lowcost[i] + cost[i][a] == lowcost[a])
        {
            v = max(v, dfs(i, b));
        }
    }
    for (int i = 1; i <= n; i++)        //  b往前走一步
    {
        if (lowcost_[i] + cost[i][b] == lowcost_[b])
        {
            v = max(v, dfs(a, i));
        }
    }
    cnt[a][b] = v;
    return v;
}

int main()
{
    int m;
    int u, v, w;
    int s1, e1, s2, e2;

    while (scanf("%d%d", &n, &m), (n | m))
    {
        init();

        while (m--)
        {
            scanf("%d%d%d", &u, &v, &w);
            if (w < cost[u][v])
            {
                cost[u][v] = cost[v][u] = w;
            }
        }

        scanf("%d%d%d%d", &s1, &e1, &s2, &e2);

        cnt[s1][s2] = 0;
        if (s1 == s2)
        {
            cnt[s1][s2] = 1;
        }
        dijkstra(s1, lowcost);
        dijkstra(s2, lowcost_);
        printf("%d\n", dfs(e1, e2));
    }

    return 0;
}

参考

《最短路》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值