描述
题解
和 51Nod 1215 数组的宽度 几乎一毛一样,不过这个只需要求一下每个数作为最大值的左右区间范围,单调栈搞一遍就行了!最后再求一个前缀和就没毛病了。
我没有加输入输出优化,险过,差点超时,如果将左右区间的求解用两次单调栈求的话,说不定就超时了,所以这里需要注意的是如果超时了,记好输入输出优化……外挂走起!
建议将这道题和 数组的宽度 一题放在一起做,写出一个代码来,另一个只是稍加修改就好了,注意 long long,一开始我就是因为没有注意这个,而导致运行代码时那一组数据都没有过!
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <stack>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
int n, Q;
struct node
{
int val;
int pos;
int left;
int right;
node() : left(1), right(1) {}
} a[MAXN];
ll b[MAXN];
ll c[MAXN];
stack<pair<int, int>> sn;
void get_max()
{
while (!sn.empty())
{
sn.pop();
}
sn.push(make_pair(a[0].val, 0));
for (int i = 1; i < n; i++)
{
while (!sn.empty() && a[i].val >= sn.top().first)
{
int pos = sn.top().second;
sn.pop();
a[i].left += a[pos].left;
if (!sn.empty())
{
a[sn.top().second].right += a[pos].right;
}
}
sn.push(make_pair(a[i].val, i));
}
while (!sn.empty())
{
int pos = sn.top().second;
sn.pop();
if (!sn.empty())
{
a[sn.top().second].right += a[pos].right;
}
}
}
void get_b()
{
memset(b, 0, sizeof(b));
for (int i = 0; i < n; i++)
{
b[a[i].val] += (ll)a[i].left * a[i].right;
}
}
void get_c()
{
c[0] = b[0];
for (int i = 1; i < MAXN; i++)
{
c[i] = c[i - 1] + b[i];
}
}
int main(int argc, const char * argv[])
{
cin >> n;
for (int i = 0; i < n; i++)
{
scanf("%d", &a[i].val);
a[i].pos = i;
}
get_max();
get_b();
get_c();
cin >> Q;
int k;
while (Q--)
{
scanf("%d", &k);
printf("%lld\n", c[MAXN - 1] - c[k - 1]);
}
return 0;
}