描述
题解
51Nod 上这种类型的问题大概有个七八道吧,都是莫比乌斯函数 + 杜教筛,由于我的数论基础实在是差,学得始终不得章法,每次都得看大佬们的题解。
WorldWide_D’s blog 有详细的问题分析和推导过程,大家可以仔细看看,我就不说太多废话了。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 4e5 + 10;
int tot;
int pri[MAXN];
int miu[MAXN + 5];
ll l, r, ans;
bool bz[MAXN + 5];
void init()
{
miu[1] = 1;
for (int i = 2; i <= MAXN; i++)
{
if (!bz[i])
{
miu[i] = -1;
pri[tot++] = i;
}
for (int j = 0; j < tot; j++)
{
int tmp = i * pri[j];
if (tmp > MAXN)
{
break;
}
bz[tmp] = 1;
if (i % pri[j] == 0)
{
miu[tmp] = 0;
break;
}
miu[tmp] = -miu[i];
}
}
}
ll calc(ll n)
{
if (!n)
{
return 0;
}
ans = 0;
for (int k = 1; (ll)k * k <= n; k++)
{
if (miu[k] != 0)
{
ll m = n / ((ll)k * k), s = 0;
for (int i = 1; (ll)i * i * i <= m; i++)
{
for (int j = i + 1; (ll)i * j * j <= m; j++)
{
s += (m / ((ll)i * j) - j) * 6 + 3;
}
s += (m / ((ll)i * i) - i) * 3 + 1;
}
if (miu[k] == 1)
{
ans += s;
}
else
{
ans -= s;
}
}
}
return (ans + n) / 2;
}
int main()
{
init();
scanf("%lld%lld", &l, &r);
printf("%lld\n", calc(r) - calc(l - 1));
return 0;
}