HDU-6006-Engineer Assignment

本文介绍了一种利用状压动态规划(DP)解决特定任务分配问题的方法。问题背景为给定一定数量的任务和工程师,每个任务有特定领域的需求,每位工程师具备不同领域的技能,目标是在确保工程师仅被使用一次的前提下,最大化完成的任务数量。文章详细阐述了如何通过预处理确定哪些工程师组合能够完成哪些任务,并在此基础上进行动态规划求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ACM模版

描述

描述

题解

常规的状压 DP 套路。

给定 N 个任务和 M 个工程师,每个任务都有不超过三个的领域人才需求,每个工程师都有不超过两个领域精通。问在工程师只能使用一次的情况下,最多完成多少任务?

题目的数据很明显的告诉我们要用状压 DP ,设置 dp[i][j] 表示前 i 个任务,工程师选用组合状态为 j 时的最多完成任务数。这里我们可以先预处理一下每个任务可以由哪些工程师组合来完成,然后在状压 DP 的过程中,直接 dp[i][j] = max(dp[i - 1][j ^ vi[i][k]] + 1, dp[i][j]); ,其中 vi[i][k] 便是上述预处理的结果。难度不大,思路比较常规。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>

using namespace std;

const int MAXN = 20;
const int MAXM = 10;
const int MAXO = 111;

int N, M;
int vis[MAXO];
int a[MAXN][MAXM];
int b[MAXN][MAXM];
int dp[MAXN][(1 << MAXM) + 1];
vector<int> vi[MAXN];   //  第 i 个任务可以由这些状态的工程师集合来完成

void init()
{
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= N; i++)
    {
        vi[i].clear();
    }
}

int main()
{
    int T;
    scanf("%d", &T);

    for (int ce = 1; ce <= T; ce++)
    {
        scanf("%d%d", &N, &M);

        init();

        //  N 个工程
        for (int i = 1; i <= N; i++)
        {
            scanf("%d", a[i]);
            for (int j = 1; j <= a[i][0]; j++)
            {
                scanf("%d", a[i] + j);
            }
        }
        //  M 个工程师
        for (int i = 0; i < M; i++)
        {
            scanf("%d", b[i]);
            for (int j = 1; j <= b[i][0]; j++)
            {
                scanf("%d", b[i] + j);
            }
        }

        //  预处理,第 i 个任务可以由哪些人完成
        for (int i = 1; i <= N; i++)
        {
            int t = 1 << M;
            for (int j = 0; j < t; j++)
            {
                int cnt = 0;
                memset(vis, 0, sizeof vis);
                for (int k = 0; k < M; k++)
                {
                    if (j & (1 << k))
                    {
                        cnt++;
                        for (int l = 1; l <= b[k][0]; l++)
                        {
                            vis[b[k][l]] = 1;
                        }
                    }
                }

                //  任务需求不超过三个人
                if (cnt > 3)
                {
                    continue;
                }

                int flag = 1;
                for (int k = 1; k <= a[i][0]; k++)
                {
                    if (!vis[a[i][k]])
                    {
                        flag = 0;
                    }
                }
                if (flag)
                {
                    vi[i].push_back(j);
                }
            }
        }

        for (int i = 1; i <= N; i++)
        {
            int t = 1 << M;
            for (int j = 0; j < t; j++)
            {
                int sz = (int)vi[i].size();
                for (int k = 0; k < sz; k++)
                {
                    if ((j | vi[i][k]) == j)
                    {
                        dp[i][j] = max(dp[i - 1][j ^ vi[i][k]] + 1, dp[i][j]);
                    }
                }
                dp[i][j] = max(dp[i][j], dp[i - 1][j]);
            }
        }

        printf("Case #%d: %d\n", ce, dp[N][(1 << M) - 1]);
    }

    return 0;
}
### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值