描述
题解
常规的状压 DP 套路。
给定
N
个任务和
题目的数据很明显的告诉我们要用状压
DP
,设置
dp[i][j]
表示前
i
个任务,工程师选用组合状态为
代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN = 20;
const int MAXM = 10;
const int MAXO = 111;
int N, M;
int vis[MAXO];
int a[MAXN][MAXM];
int b[MAXN][MAXM];
int dp[MAXN][(1 << MAXM) + 1];
vector<int> vi[MAXN]; // 第 i 个任务可以由这些状态的工程师集合来完成
void init()
{
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= N; i++)
{
vi[i].clear();
}
}
int main()
{
int T;
scanf("%d", &T);
for (int ce = 1; ce <= T; ce++)
{
scanf("%d%d", &N, &M);
init();
// N 个工程
for (int i = 1; i <= N; i++)
{
scanf("%d", a[i]);
for (int j = 1; j <= a[i][0]; j++)
{
scanf("%d", a[i] + j);
}
}
// M 个工程师
for (int i = 0; i < M; i++)
{
scanf("%d", b[i]);
for (int j = 1; j <= b[i][0]; j++)
{
scanf("%d", b[i] + j);
}
}
// 预处理,第 i 个任务可以由哪些人完成
for (int i = 1; i <= N; i++)
{
int t = 1 << M;
for (int j = 0; j < t; j++)
{
int cnt = 0;
memset(vis, 0, sizeof vis);
for (int k = 0; k < M; k++)
{
if (j & (1 << k))
{
cnt++;
for (int l = 1; l <= b[k][0]; l++)
{
vis[b[k][l]] = 1;
}
}
}
// 任务需求不超过三个人
if (cnt > 3)
{
continue;
}
int flag = 1;
for (int k = 1; k <= a[i][0]; k++)
{
if (!vis[a[i][k]])
{
flag = 0;
}
}
if (flag)
{
vi[i].push_back(j);
}
}
}
for (int i = 1; i <= N; i++)
{
int t = 1 << M;
for (int j = 0; j < t; j++)
{
int sz = (int)vi[i].size();
for (int k = 0; k < sz; k++)
{
if ((j | vi[i][k]) == j)
{
dp[i][j] = max(dp[i - 1][j ^ vi[i][k]] + 1, dp[i][j]);
}
}
dp[i][j] = max(dp[i][j], dp[i - 1][j]);
}
}
printf("Case #%d: %d\n", ce, dp[N][(1 << M) - 1]);
}
return 0;
}