自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 python-字典

在 Python 中,dict字典(Dictionary) 是一种非常重要的数据类型,是一种可变的、无序的、键值对(key - value)集合,哈希表在python中的实现就是字典。

2025-03-23 23:35:26 436

原创 一个例子带你入门机器学习

这篇文章将使用经典墨尔本房价数据集作为例子,引导机器学习的流程。数据集有太多的变量,多到难以理解,甚至无法很好地打印出来。如何将这海量的数据削减为能够理解的内容?我们将首先凭借直觉选择几个变量。

2024-07-29 20:23:56 532

原创 机器学习之特征提取

自编码器就像是一个神奇的魔术师,它能将复杂的数据压缩成简洁的低维表示,同时还能从这个压缩后的表示中重构出原始数据。想象一下,把一堆杂乱无章的东西塞进一个小盒子里,然后还能再把它们完好无损地取出来,这就是自编码器的魅力所在。

2024-07-28 23:59:53 1537

原创 【小白记录机器学习】——pandas库的操作代码实现

pandas是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,在任何机器学习项目中,第一步都是熟悉数据。Pandas 是数据科学家用于探索和操作数据的主要工具,大多数人在代码中将 pandas 简称为 pd。Pandas 库中最重要的部分是 DataFrame,DataFrame 保存的数据类型您可以想象成一个表格,类似于 Excel 中的工作表或 SQL 数据库中的表。以下是一些pandas的基本操作及代码实现

2024-07-26 18:13:10 563

原创 【小白记录深度学习】——物理信息神经网络(PINNs)

PINNs(Physics - informed Neural Networks,物理信息神经网络)的基本原理是应用神经网络来近似解决物理问题,将物理原理(用偏微分方程数学表达)作为先验知识,通过对偏微分方程残差的惩罚来实现。

2024-07-22 21:33:56 10202 4

原创 【小白记录python】——类(class)的简单解释

在编程中,类(Class)是一种用户自定义的数据类型,它将数据(通常称为属性或成员变量)和对这些数据进行操作的函数(通常称为方法或成员函数)封装在一起,相比于一般的函数更方便调用,通俗来讲,类就是很多函数的集合,这些函数共用一个数据源。类可以被看作是创建对象的模板或蓝图。通过类,可以创建多个具有相同结构和行为的对象实例。

2024-07-20 10:08:46 3153

原创 初探机器学习与力学研究的交叉领域

由于机器学习与力学结合的方向颇多,以上只是最典型的代表。在交叉领域中,大部分研究都是基于人工神经网络,基于最底层的网络优化,并未涉及到多模态的大模型应用。机器学习在工程领域的应用中,最重要的一点,工程领域不允许存在很大的误差,差之毫厘,失之千里,工程领域人命关天,而神经网络本质上还是一个无法解释的黑箱,无法预测它会突然发生什么变化,所以神经网络在工程领域的研究还是偏少,希望随着神经网络的发展,以后可以增强神经网络的可解释性和准确性,更好地应用于工程领域。

2024-07-18 19:14:37 862

原创 【小白记录机器学习】——注意力机制(transformer的原型)

以上的术语太过深奥,如果用一种更容易理解的方法来讲,就是在多层感知机中,我们的x,y为一一对应的关系,x为输入,y为输出。我们将输入从单个x扩大到所有的xi,将输出从y扩大到所有的yi,当我们给定一个查询x时,我们调用所有的特征xi和yi,对他们赋予不同的权重,比如在上面的核回归中,xi与x越接近,权重越高。普通的多层感知机可以看作是退化之后的注意力机制,如果我们将除了xi=x以外的yi的权重设置为零,将xi=x时的权重设置为1,则x与y的关系退化为普通的多层感知机。,即为yi前面的权重项。

2024-07-16 16:07:42 451

原创 【小白记录深度学习】-循环神经网络

循环神经网络与卷积神经网络一样具有很长的研究历史,循环神经网络与卷积神经网络都源自多层感知机,可以说神经网络都是对多层感知机算法的改进。卷积神经网络能有效地处理空间消息,而循环神经网络能有效地处理序列消息

2024-07-15 00:32:40 136

原创 【小白记录机器学习1】

由特征和标签组成,特征是每个数据带有的n个自变量变量,标签是单个数据对应的唯一的因变量,所以可以理解成:已知n个自变量,建立一个函数,求因变量。标签是数据的结果,也就是我们要预测的结果。分割数据:为了更好地评估模型的性能,我们通常会将数据分为训练集、验证集、测试集三部分。训练集用来训练模型,验证集用来选择模型,测试集用来评估模型性能。收集数据:首先,需要收集机器学习所需的数据。准备数据:收集到的数据通常需要进行预处理,包括缺失值填充、异常值处理、特征提取等。模型预测:使用训练好的模型预测新数据。

2024-07-14 10:42:17 720 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除