文献:Bansal M, Gimpel K, Livescu K. Tailoring Continuous Word Representations for Dependency Parsing[C]//ACL (2). 2014: 809-815.
修正策略
(1)文章采用相对较小的w:实验发现,在word2vec中,窗口尺寸w越大,则捕获词语义的概率越高;窗口尺寸w越小,则捕获词POS的概率越高.
(2)negative sampling中的采样对象,传统word2vec在目标词v的邻域中进行采样,而本文的采样对象是目标词
实验方案
评价标准1: We compute cosine similarity between the two vectors in each word pair, then order the word pairs by similarity and compute Spearman’s rank correlation coefficient (ρ) with the gold similarities
评价标准2: We use a metric based on unsupervised evaluation of POS taggers, and perform clustering and map each cluster to one POS tag so as to maximize tagging accuracy
改进Word2Vec在依存分析中的应用
本文介绍了一种改进的Word2Vec模型在依存语法分析任务中的应用,通过调整窗口大小和采样策略来提高词性标注的准确性。实验结果显示,这种方法能够有效提升词向量在词性标注任务上的表现。
4893

被折叠的 条评论
为什么被折叠?



