面向依存关系语法分析的词向量裁剪

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/falianghuang/article/details/72850938

文献:Bansal M, Gimpel K, Livescu K. Tailoring Continuous Word Representations for Dependency Parsing[C]//ACL (2). 2014: 809-815.

修正策略

(1)文章采用相对较小的w:实验发现,在word2vec中,窗口尺寸w越大,则捕获词语义的概率越高;窗口尺寸w越小,则捕获词POS的概率越高.
(2)negative sampling中的采样对象,传统word2vec在目标词v的邻域中进行采样,而本文的采样对象是目标词v在依存分析树中的特定集合(目标词v的爷爷、父亲与孩子)

实验方案

评价标准1: We compute cosine similarity between the two vectors in each word pair, then order the word pairs by similarity and compute Spearman’s rank correlation coefficient (ρ) with the gold similarities
评价标准2: We use a metric based on unsupervised evaluation of POS taggers, and perform clustering and map each cluster to one POS tag so as to maximize tagging accuracy

展开阅读全文

没有更多推荐了,返回首页