自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 multidimensional scaling

multidimensional scaling 问题描述 给定nnn个ddd维的数据点x1,x2,…,xnx_1,x_2, \dots,x_nx1​,x2​,…,xn​,对数据进行降维。降维的标准是降维后数据点之间的距离dij(Y)d_{ij}^{(Y)}dij(Y)​接近原数据点间的距离dij...

2019-12-05 16:00:35

阅读数 4

评论数 0

原创 协方差矩阵的几何解释

昨天看LLE locally linearly embedding时,看到目标函数minY∑in∥yi−∑j=1kwijyj∥2min_Y\sum_i^n\Vert{y_i-\sum_{j=1}^k w_{ij} y_j}\Vert^2minY​∑in​∥yi​−∑j=1k​wij​yj​∥2 ....

2019-11-26 18:55:59

阅读数 7

评论数 0

原创 特征值 特征向量

一个线性变换AAA,它的特征向量xxx,在对这个向量进行线性变换后,它的方向不变Ax=λxAx=\lambda xAx=λx. 方阵才有特征值。 图片出处 我还是有些东西想不明白,记录在这。 矩阵 线性变换 本质 基变换 特征向量 特征值 方阵 对称矩阵 变过去再变回来什么丢失了 平移 拉伸 旋...

2019-11-26 17:46:42

阅读数 7

评论数 0

原创 线代和概率论补漏

1、Trace the trace of a square matrix A is defined as the sum of elements on the main diagonal of A. The trace of a matrix is sum of the eigenvalues, ...

2019-10-27 21:19:00

阅读数 37

评论数 0

原创 880. Decoded String at Index, medium, stack

思路1 直接用String把字符串拼起来。 public String decodeAtIndex(String S, int K) { StringBuffer sb = new StringBuffer(); for (int i = 0; i &l...

2019-10-08 18:55:07

阅读数 6

评论数 0

原创 155. Min Stack ——easy, stack

原题链接 思路 还没读完题时第一反应是最小堆,然而不符合题意。题意是要实现一个普通的栈,外加一个getMin()的功能。 思路是使用两个栈,一个是普通的栈,另一个栈放当前最小值。 class MinStack { private Deque<Integer> ...

2019-10-08 12:27:40

阅读数 4

评论数 0

原创 726. Number of Atoms

原题链接 思路 思路1 设置两个栈,一个放括号,另一个放Map,放一个左括号,就放一个Map,括号出栈时,把另一个栈头的map弹出,值加入到新的栈顶map。 public String countOfAtoms(String formula) { Deque<Character&a...

2019-09-27 16:32:58

阅读数 9

评论数 0

原创 591. Tag Validator

591. Tag Validator 思路 栈,从左向右扫描字符串,遇到开始标签压栈,遇到结束标签压栈,结束时判断是否一致;状态,开始标签状态,结束标签状态,输入字符,变换状态,自动状态机。State StartTag EndTag TagContent 实现1 定义了一个State,定义了Sta...

2019-09-05 14:23:21

阅读数 26

评论数 0

原创 Lec3.2 Word2vec

The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word. CBOW A ver...

2019-08-22 14:25:36

阅读数 18

评论数 0

原创 Lec3.1 Word2vec

Language Models A language model computes a probability for a sequence of words: P(w1,…,wT)P(w_1,\dots,w_T)P(w1​,…,wT​) 最简单的用向量表示词的方式是One-hot,向量的长度是...

2019-08-21 10:33:24

阅读数 17

评论数 0

原创 Lec3.0 Word2vec

word2vec Word2vec是一群用来生成词向量的模型。这些模型很浅,用两层神经网络来训练构建词的语义上下文。Word2vec输入是一个大的文本语料库,输出是一个向量空间,通常有数百维,语料库中每一个词对应向量空间中的一个向量。语料库中上下文相似的词它们对应的词向量也相近。 Word2vec...

2019-08-20 19:45:17

阅读数 15

评论数 0

原创 奇异值分解

我觉得线性代数中最主要的概念是基变换和矩阵分解。矩阵分解的本质就是基变换。选择不同的基,可以将矩阵分解为不同的形式。几种不同的线性变换 AAA是一个m∗nm*nm∗n的矩阵,与AAA相关的4个空间如下: 列空间C(A), 行空间R(A), 零空间N(A), ATA^TAT的零空间N()N()N()...

2019-08-18 10:29:59

阅读数 87

评论数 0

原创 Lec1.2 Backpropagation

Lec1.2 Backpropagation 上图中每个cell都是一个perceptron,组合起来就是feed-forward neural network,用backpropagation算法计算图中的权重。 chain rule 链式法则 观察神经网络中3个层,每个层中的一个节点。每个...

2019-08-14 14:11:23

阅读数 25

评论数 0

原创 Lec1.1 Perceptron

Perceptron is a simple linear classifier.

2019-08-13 20:27:18

阅读数 21

评论数 0

原创 Lec2.2 Regularization

Classical Regularization: Parameter Norm Penalty 54:00 Most classical regularization approaches are based on limiting the capacity of models, by addi...

2019-08-08 18:31:18

阅读数 63

评论数 0

原创 Lec2.1 Regularization

Lec2.1 Regularization Most machine learning tasks are estimation of a function f^(x)\hat{f}(x)f^​(x) parameterized by a vector of parameters θ\theta...

2019-08-08 11:30:35

阅读数 22

评论数 0

原创 周末小记

周末 房东用的是电信光宽带,然后接个交换机,通过交换机连接各个租户。 最近两天都上不了网,我以为是网线年久坏了,然后我自己换了个水晶头,还是不能上网(这步其实没有必要,因为本来显示可以连接到交换机,只是交换机连接不到外网),问了邻居家们,也是有时会上不了,感觉不稳定,重新插拔了交换机上的网线,后来...

2019-04-01 17:00:01

阅读数 134

评论数 0

原创 同步 异步 think

一个进程发送消息,另一个进程等着接收消息,这个是同步吧? 一个进程发生消息到一个消息队列,另一个进程从消息队列中取出消息,这个是异步? 代码中的同步synchronized,在java中被synchronized包含的代码,要先获得一个锁,然后才能执行,也就是执行这段代码的线程们要one-by...

2019-03-20 00:16:59

阅读数 55

评论数 0

原创 数据库 存储 think

内存、硬盘,存储与查找,本质并没有区别,只是速度不同,都是给定一个地址,就可以访问。 数据库,索引,数据库的内容是存在硬盘中的,考虑查找和插入的时间复杂度。Hash那么优秀,时间复杂度几乎为O(1)O(1)O(1),为什么还有别的存储类型,比如有序的数组,时间复杂度为O(logN)O(logN)...

2019-03-18 11:31:35

阅读数 62

评论数 0

原创 概率论与数理统计

一些基本概念 随机试验E,随机事件A,基本事件,样本空间(基本空间)Ω={ω}\Omega=\{\omega\}Ω={ω},随机变量X 设X是一离散型随机变量,它可能的取值为x1,x2,…,xk,…x_1,x_2,\dots,x_k,\dotsx1​,x2​,…,xk​,…,并且取...

2019-02-25 18:49:53

阅读数 140

评论数 0

提示
确定要删除当前文章?
取消 删除