
椭圆可以看作由一个圆经过拉伸和旋转两个线性变换得到。
变换T:对空间 V V V中对每个向量 v v v,对于一个 T ( v ) T(v) T(v);
线性变换: T ( c v + d w ) = c T ( v ) + d T ( w ) T(cv+dw)=cT(v)+dT(w) T(cv+dw)=cT(v)+dT(w)
线性变换可以用矩阵表示。假设蓝色的圆到红色的椭圆是通过沿y轴方向拉伸一倍得到的。那么 x x x到 x 1 x_1 x1可以用下面的矩阵表示:
x 1 = [ 1 0 0 2 ] x x_1 = \left[ \begin{matrix} 1 & 0 \\ 0 &2 \end{matrix} \right ]x x1=[1002]x
下面先说一下基变换:假设空间由一个向量,要想用数值表示这个向量首先要定义一组基(basis)。 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2</