HashMap源码分析以及面试题

本文是lz通过视频,博客,研究源码学习等方式,总结的hashMap源码分析,以及常见的面试题解析。写篇博客整理一下自己的思路,以便后续复习,顺便分享出来供大家参考。

本篇文章基于 JDK1.8

hash

什么是Hash?

Hash中文翻译为散列,又成为“哈希”,是一类函数的统称。把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。

Hash算法的优缺点

hash表其实是结合了数组和链表的优点,进行的折中方案。平衡了数组和链表的优缺点。

优点: 插入和查找速度快,时间复杂度为O(1)

缺点:

  1. 扩展性差,需要提前预测数据量的大小

2. 不能有序遍历数据

hash算法是如何设计的呢?一个好点hash算法应该满足什么要求?你怎么考虑?
  1. 散列度高,分布均匀
  2. 效率高,要做到长文本也能快速计算出hash值
  3. hash值不能逆推出原本内容。
  4. 两次输入的内容不同,算出的hash值也不同
使用hash算法会有什么问题吗?

肯定会有问题的,把任意长度的输入,通过散列算法,变换成固定长度的输出。就有可能出现,两个不同的值,通过hash算法,算出两个相同的hash值,就会发生hash冲突。

这个hash冲突可以避免吗?

理论上来讲是不可能完全避免的,例如,10个人抢9张车票,肯定会有两个人抢到同1张票的情况,就会发生冲突。所以,hash冲突不能完全避免,只能尽量避免。

哈希值相同,对象一定相同吗?对象相同,哈希值一定相同吗?

不一定。一定。

hashMap

什么是Map?

map就是用于存储键值对(<key,value>)的集合类,也可以说是一组键值对的映射。

  1. key唯一,不能重复
  2. 一个key只能对应一个value;一个value可以对应多个key
  3. key和value都可以是任意的引用数据类型
什么是HashMap?

HashMap就是用hash表实现的map类。

  1. jdk1.7及以前,hashMap的结构是 数组+链表
  2. jdk1.8及之后,hashMap的结构是 数组+链表+红黑树
  3. 每个单元都是 Node 结构,Node结构中有 key,value,next,hash字段,next的作用就是,当发生hash冲突的时候,当前桶位中node和冲突的node连成一个链表的节点。

数组+单链表,jdk1.8以后又加了红黑树,当链表节点个数超过8个(m默认值)以后,开始使用红黑树,使用红黑树一个综合取优的选择,相对于其他数据结构,红黑树的查询和插入效率都比较高。而当红黑树的节点个数小于6个(默认值)以后,又开始使用链表。这两个阈值为什么不相同呢?主要是为了防止出现节点个数频繁在一个相同的数值来回切换,举个极端例子,现在单链表的节点个数是9,开始变成红黑树,然后红黑树节点个数又变成8,就又得变成单链表,然后节点个数又变成9,就又得变成红黑树,这样的情况消耗严重浪费,因此干脆错开两个阈值的大小,使得变成红黑树后“不那么容易”就需要变回单链表,同样,使得变成单链表后,“不那么容易”就需要变回红黑树。

散列表(node数组)是在什么时候创建的?

散列表不是在 new 的时候创建的,而是在进行put操作的时候才会创建。

new HashMap()的时候,只做了3件事,校验参数的合法性,初始化容量,初始化负载因子

HashMap的默认初始容量?

默认容量为16

HashMap初始化时,如果指定容量大小为10,那么实际大小是多少?

因为HashMap的初始化函数中规定容量大小要是2的指数倍,即2,4,8,16,所以当指定容量为10时,实际容量为16。

static final int tableSizeFor(int var0) {
    int var1 = var0 - 1;
    var1 |= var1 >>> 1;
    var1 |= var1 >>> 2;
    var1 |= var1 >>> 4;
    var1 |= var1 >>> 8;
    var1 |= var1 >>> 16;
    return var1 < 0 ? 1 : (var1 >= 1073741824 ? 1073741824 : var1 + 1);
}
默认的负载因子是多少?负载因子有什么用?

默认的负载因子是0.75。

负载因子的作用:计算扩容阈值。例如:无参构造创建的hashmap对象,它的第一次扩容的阈值就是: 16 * 0.75 = 12

HashMap是先添加数据,还是先进行扩容呢?

先添加数据,在进行扩容,再判断是否达到链表转为红黑树的条件,满足条件之后再进行转换

HashMap扩容的原因?

提升HashMap的get、put等方法的效率,因为如果不扩容,链表就会越来越长,导致插入和查询效率都会变低。

容量大小为什么要取2的指数倍?

两个原因:

  1. 提升计算效率:因为2的指数倍的二进制都是只有一个1,而2的指数倍-1的二进制就都是左全0右全1。那么跟(2^n - 1)做按位与运算的话,得到的值就一定在【0,(2^n - 1)】区间内,这样的数就刚合适可以用来作为哈希表的容量大小,因为往哈希表里插入数据,就是要对其容量大小取余,从而得到下标。所以用2^n做为容量大小的话,就可以用按位与操作替代取余操作,提升计算效率。
  2. 减少hash碰撞。便于动态扩容后的重新计算哈希位置时能均匀分布元素:因为动态扩容仍然是按照2的指数倍,所以按位与操作的值的变化就是二进制高位+1,比如16扩容到32,二进制变化就是从0000 1111(即15)到0001 1111(即31),那么这种变化就会使得需要扩容的元素的哈希值重新按位与操作之后所得的下标值要么不变,要么+16(即挪动扩容后容量的一半的位置),这样就能使得原本在同一个链表上的元素均匀(相隔扩容后的容量的一半)分布到新的哈希表中。(注意:原因2(也可以理解成优点2),在jdk1.8之后才被发现并使用)
链表转为红黑树的条件?
  1. 链表长度大于8
  2. map的长度大于64

链表转红黑树是链表长度达到阈值,这个阈值是8,红黑树转链表阈值为6

为什么是8,不是16,32甚至是7 ?又为什么红黑树转链表的阈值是6,不是8了呢?

因为经过计算,在hash函数设计合理的情况下,发生hash碰撞8次的几率为百万分之6,概率说话。因为8够用了,至于为什么转回来是6,因为如果hash碰撞次数在8附近徘徊,会一直发生链表和红黑树的互相转化,为了预防这种情况的发生。

HashMap是如何定位下标的?

先获取Key,然后对Key进行hash,获取一个hash值,然后用hash值对HashMap的容量进行取余(实际上不是真的取余,而是使用按位与操作),最后得到下标。

HashMap的 hash(Obeject k)方法中为什么在调用 k.hashCode()方法获得hash值后,为什么不直接对这个hash进行取余,而是还要将hash值进行右移和异或运算?

A:如果HashMap容量比较小而hash值比较大的时候,哈希冲突就容易变多。基于HashMap的indexFor底层设计,假设容量为16,那么就要对二进制0000 1111(即15)进行按位与操作,那么hash值的二进制的高28位无论是多少,都没意义,因为都会被0&,变成0。所以哈希冲突容易变多。那么hash(Obeject k)方法中在调用 k.hashCode()方法获得hash值后,进行的一步运算:h=(h>>>20)(h>>>12);有什么用呢?首先,h>>>20和h>>>12是将h的二进制中高位右移变成低位。其次异或运算是利用了特性:同0异1原则,尽可能的使得h>>>20和h>>>12在将来做取余(按位与操作方式)时都参与到运算中去。综上,简单来说,通过h=(h>>>20)(h>>>12);运算,可以使k.hashCode()方法获得的hash值的二进制中高位尽可能多地参与按位与操作,从而减少哈希冲突。

HashMap是怎么添加数据的?

流程:

  1. 首先根据 key值,通过hash(key)算出key对应的hashCode值
  2. 然后判断hashmap是否为空,如果为空,则需要先进行初始化。
  3. 根据 hashCode & (n-1) 算出key对应的数组下标,获取数组下标对应桶位
  4. 添加数据分为4种情况:
    1. 如果该位置为null,则直接添加
    2. 该桶位不为null,则通过equals()判断key的值是否相同,如果key相同,则直接覆盖原有值
    3. 该桶位不为null,key也不相同,判断该位置原有对象的类型是否是TreeNode,如果是TreeNode,则按照红黑树的方法添加
    4. 该桶位不为null,key不相同,不是红黑树结构,遍历链表,如果遍历过程中,有key相同的,则覆盖原有值,如果没有,则插入在链表尾部;插入之后,判断是否达到阈值,如果达到阈值,则进入树化方法,树化方法会先判断map长度是否达到最小数容量(64),没有达到则进行扩容,达到之后则转为红黑树。
  5. 如果桶位不为null,添加完数据之后,会将原有数据返回
  6. 如果桶位为null ,添加成功后,会判断是否应该进行扩容操作,满足条件则进行扩容。

再看看JDK源码,是不是就容易读懂了呢

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

/**
 * 通过hashcode ^ (h >>> 16)  算出key对应的hashCode值
 * hash算法,右移16位,是为了让hashcode的值的高位也参与运算,减少hash碰撞
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 添加数据
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
// 树化方法
final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

初始化和扩容方法

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
HashMap是怎么获取数据的?

分为4种情况:

  1. key为null
  2. key不为null,key对应的节点是单个数据,没有形成链表
  3. key不为null,key对应的节点已经形成链表,没有转换为红黑树
  4. key不为null,key对应的节点已经形成了红黑树

流程:

  1. 调用get方法,首先 调用hash(key),算出key对应的hashCode值。
  2. 判断map(Node<K,V>[] tabl)是否为空,通过算出的 hashCode & map的长度,算出key对应的数组下标,得到node节点。
  3. 比较node节点的hash值和key值,如果相同就证明是同一个键,返回node节点;
  4. 如果不同,则遍历下一个元素。首先判断该节点类型是否是 TreeNode类型,如果是TreeNode类型,则进行TreeNode 的方法遍历红黑树;如果不是,则遍历链表结构,直至找到对应的key
  5. 如果一直找不到,则返回 null
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
 * 通过hashcode ^ (h >>> 16)  算出key对应的hashCode值
 * hash算法,右移16位,是为了让hashcode的值的高位也参与运算,减少hash碰撞
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 获取数据
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

HashMap和Hashtable有什么区别?

  1. HashMap是线程不安全的,Hashtable是线程安全的。HashTable的所有方法都使用 synchronized修饰,实现线程安全的方式是在修改数据时锁住整个HashTable,效率较低。
  2. HashMap中key和value都可以为null;Hashtable中key和value都不能为null。
  3. HashMap的结构是数组+链表+红黑树,HashMap在链表长度>=8,HashMap的长度>=64时,链表会转为红黑树;Hashtable的结构是数组+链表,不会转为红黑树。
  4. HashMap是在调用put()方法时才初始化,Hashtable是在创建的时候就初始化。
  5. HashMap的默认初始容量是16,扩容是 2n;Hashtable的默认初始容量是11,扩容是(oldSize*2)+1。负载因子默认都是0.75。
  6. HashMap获取数组下标是用(n - 1) & hash,下标按位与key的hash值;Hashtable获取数组下标是(hash & 0x7FFFFFFF) % tab.length;通过取余操作获取。

HashMap和TreeMap的区别?

  1. HashMap:基于哈希表实现,数组+链表+红黑树;TreeMap:基于红黑树实现,只有一个树节点。
  2. HashMap是无序的,TreeMap是有序的。
  3. HashMap中key和value都可以为null;TreeMap中key不能为null,value可以为null。
  4. HashMap和TreeMap都是线程不安全的。
  5. HashMap:适用于在Map中插入、删除和定位元素;Treemap:适用于按自然顺序或自定义顺序遍历键(key)。

HashMap和ConcurrentHashMap的区别?

  1. ConcurrentHashMap结构是分段的数组+链表+红黑树实现
  2. HashMap是线程不安全的;ConcurrentHashMap是线程安全的,源码中大量使用volatile,使用了锁分段技术来实现线程安全,使用synchronized进行加锁操作。
  3. HashMap中key和value都可以为null;ConcurrentHashMap中key和value都不能为null。

锁分段技术:首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
ConcurrentHashMap中,按照桶位进行加锁,进行get、put、remove等常用操作时,只锁住当前需要用到的桶,并发性能较高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值