Fourier Transform Intro - Fourier Integral Theorem


https://people.math.osu.edu/gerlach.1/math/BVtypset/node31.html


The Fourier Integral Theorem The mathematically more precise statement of this theorem is as follows:

Theorem 23.1 (Fourier's Integral Theorem)
Given:(i)
$ f$ is function piecewise continuous on every bounded closed interval of the $ x$ -axis.
(ii)
At each point $ x$ the function $ f$ has both a left derivative $ f'_L(x)$ and a right derivative $ f'_R(x)$ ,
(iii)
$ f\in L^1(-\infty,\infty)$ , i.e. $ f$ is absolutely integrable along the $ x$ -axis:

$\displaystyle \int_{-\infty}^{\infty}\vert f(x)\vert dx<\infty
$

Conclusion:

$\displaystyle \underbrace{\lim_{K\to\infty}\int_{-K}^Kdk\frac{e^{ikx}}{\sqrt{2\...
...2\pi}}f(t)dt}_{
\displaystyle\hat f(k)}
=\frac{1}{2}
\left[f(x^-)+f(x^+)\right]$  (239)

Comments:

  1. This result can be restated as a Fourier transform pair,

    $\displaystyle \hat f(k)=\int^\infty_{-\infty}\frac{e^{-ikt}}{\sqrt{2\pi}}f(t)dt$(240)

    $\displaystyle f(x)=\int^\infty_{-\infty}\frac{e^{ikx}}{\sqrt{2\pi}}\hat f(k)dk$(241)

    whenever $ f$ is continuous.
  2. By interchanging integration order and letting $ K=1/\alpha$ one has

    $\displaystyle f(x)=\lim_{\alpha\to 0} \int^\infty_{-\infty} \underbrace{ \int_{...
...pha}dk \frac{e^{ik(x-t)}}{2\pi}}_{ \displaystyle\delta_\alpha(x-t)} f(t)\, dt~.$(242)

    This equation holds for all continuous functions $ f\in L^1(-\infty,\infty)$ . Thus $ \delta_\alpha(x-t)$ is another delta convergent sequence:

    $\displaystyle \delta(x-t)=\lim_{\alpha\to 0}\delta_\alpha(x-t)=\int^\infty_{-\infty} \frac{e^{ik(x-t)}}{2\pi}dk~.$(243)

    It is of course understood that one first do the integration over $ t$ before taking to the indicated limit.
  3. Either one of the two equations, Eq.(2.42) or (2.43), is a generalized completeness relation for the set of ``wave train'' functions,

    $\displaystyle \left\{ \frac{e^{ikx}}{\sqrt{2\pi}}\colon -\infty <k<\infty\right\}~.
$

    However, these functions are not normalizable, i.e., they $ \not\in
L^2(-\infty , \infty )$ . Instead, as Eq.(2.43) implies, they are said to be ``$ \delta$ -function normalized''.

Proof of the Fourier integral theorem:

The proof of the Fourier integral theorem presupposes that the Fourier amplitude $ \hat f(k)$ is well-defined for each $ k$ . That this is indeed the case follows from the finiteness of $ \vert\hat f(k)\vert$ :    ( following loss  "=" )

$\displaystyle \vert\hat f(k)\vert\le \int^\infty_{-\infty}\vert\frac{e^{-ikt}}{...
...\vert dt
\frac{1}{\sqrt{2\pi}}\int^\infty_{-\infty}\vert f(t)\vert dt<\infty~.
$

The last inequality is an expression of the fact that $ f\in L^1(-\infty,\infty)$ . Thus $ \hat f(k)$ is well-defined indeed.

The proof of the Fourier integral theorem runs parallel to the Fourier series theorem on page [*]. We shall show that

$\displaystyle \lim_{K\to\infty}S_K(x)=\frac{1}{2}\left[f(x^-)+f(x^+)\right]~,
$

where

$\displaystyle S_K(x)$$\displaystyle = \int^\infty_{-\infty}dt\, f(t)\int_{-K}^K\frac{e^{ik(x-t)}}{2\pi}dk$   
 $\displaystyle =\int^\infty_{-\infty}dt\, f(t) \left. \frac{e^{ik(x-t)}}{2\pi i(x-t)}\right\vert^K_{-K}$   
 $\displaystyle =\int^\infty_{-\infty}dt\, f(t) \frac{\sin K(x-t)}{\pi (x-t)}$   
 $\displaystyle =\underbrace{\int^x_{-\infty} f(t) \frac{\sin K(x-t)}{\pi (x-t)}d...
...x)} +\underbrace{\int^\infty_{x} f(t) \frac{\sin K(x-t)}{\pi (x-t)}dt}_{I_K(x)}$   


The evaluation of the integrals is done by shifting the integration variable. For the second integral one obtains

$\displaystyle I_K(x)$$\displaystyle =\int^\infty_0 f(x+u) \frac{\sin Ku}{\pi u}du$   
 $\displaystyle =\int^\infty_0 \frac{f(x+u)-f(x^+)}{\pi u}\sin Ku\,du + \frac{f(x^+)}{\pi}\int^\infty_0 \frac{\sin Ku}{u}du ~.$   


Using the fact that

$\displaystyle \int^\infty_0 \frac{\sin Ku}{u}du=\frac{\pi}{2}~,
$

and the fact that

$\displaystyle \frac{f(x+u)-f(x^+)}{\pi u}\equiv G(u)
$

is piecewise continuous everywhere, including at $ u=0$ , where

$\displaystyle G(0)\equiv \lim_{u\to 0^+}\frac{f(x+u)-f(x^+)}{\pi u}=f'_R(x)
$

is the right hand derivative of $ f$ at $ x$ , one finds that

$\displaystyle \lim_{K\to\infty}I_K(x)$$\displaystyle =\lim_{K\to\infty} \left\{ \int^\infty_0 G(u)\sin Ku \,du +\frac{f(x^+)}{\pi}\frac{\pi}{2}\right\}$   
 $\displaystyle =0+\frac{1}{2}f(x^+)$   


with the help the Riemann-Lebesgue lemma.

A similar analysis yields

$\displaystyle \lim_{K\to\infty}J_K(x)=\frac{1}{2}f(x^-)
$

The sum of the last two equations yields

$\displaystyle \lim_{K\to\infty} S_(K)=\lim_{K\to\infty}[J_K(x)+I_K(x)]=\frac{1}{2}
\left[f(x^-)+f(x^+)\right]~,
$

This validates Fourier's integral theorem.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值