迭代器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。
迭代器是一个可以记住遍历的位置的对象,简单的说,就是他只记录数据在内存中所在的位置,使用的是栈的逻辑记录数据所在的内存地址,因为用的是栈的逻辑,所以只需要记住栈的起始地址,以及栈的偏移量就可以得到所有数据的内存地址。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。因此,迭代器可以存储很多数据,而不占用很多内存空间,但是这个特性也导致它无法反复读数据,也就是“阅完即焚”。
迭代器有两个基本的方法:iter() 和 next()。
字符串,列表或元组对象都可用于创建迭代器:
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
print(it)
# 输出结果:<list_iterator object at 0x000001499C6EA400>
print (next(it)) # 输出迭代器的下一个元素
# 输出结果:1
print (next(it))
# 输出结果:2
由此可以看出,迭代器并不能直接输出结果,他返回的值是一个迭代器对象,只能使用next方法来提取迭代器下一个元素。
那么如果迭代器里的数据很多,总不能一个接一个next的吧。
当然python肯定不会那么蠢,所以迭代器对象也可以使用常规for语句进行遍历:
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
for x in it:
print (x, end=" ")
# 输出结果:1 2 3 4
或者,while循环调用next提取元素
import sys # 引入 sys 模块
list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
while True:
try:
print (next(it),end=" ")
except StopIteration:
sys.exit()
# 输出结果:1 2 3 4
创建一个迭代器
把一个类作为一个迭代器使用,需要在类中实现两个方法 __iter__() 与 __next__() 。
如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __init__(), 它会在对象初始化的时候执行。
__iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
__next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。
为了方便说明这两个方法,我们来创建一个返回数字的迭代器,初始值为 1,逐步递增 1,并通过__next__()返回递增后的值:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
x = self.a
self.a += 1
return x
myclass = MyNumbers()
myiter = iter(myclass)
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
'''
输出结果:
1
2
3
4
5
'''
StopIteration
刚刚提到了StopIteration,这是什么呢?这是一种异常,用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后,通过raise触发 StopIteration 异常来结束迭代。
比如,想要写一个程序,在数据 20 次迭代后停止执行运行,那么可以这么写:
class MyNumbers:
def __iter__(self):
self.a = 1
return self
def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration
myclass = MyNumbers()
myiter = iter(myclass)
for x in myiter:
print(x)
'''
输出结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
'''
生成器
ok~说完迭代器,那么我们再来看一个更神奇的内容,为什么说它神奇呢?
因为在 Python 中,使用了 yield 的函数被称为生成器(generator)。跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器,所以生成器生成的数据也只能使用一次,“阅完即焚”。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,则会返回的是一个迭代器对象。
我们使用 yield 来实现斐波那契数列,借此看一下生成器是什么逻辑:
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()
# 输出结果:0 1 1 2 3 5 8 13 21 34 55
结束语
至此,我们说完了迭代器与生成器,总而言之,迭代器就是一个集合,他记录了数据所在内存地址,然后以栈的形式保存这些内存地址,所以python只需要记住集合的开始地址和偏移量,就可以得到遍历集合,然后根据集合中的每一个内存地址就可以得到数据。
生成器就是一个特殊的迭代器,他是一个生成迭代对象的函数,通过yield来生成迭代对象中的每一个元素。