- 博客(10)
- 收藏
- 关注
翻译 《Double Graph Based Reasoning for Document-level Relation Extraction》
论文阅读 Double Graph Based Reasoning for Document-level Relation Extraction
2022-08-15 17:23:50 331
原创 python报错:Type Error:‘numpy.ndarray‘object is not callable
此类错误一般在内部函数名被重新定义时发生。例如:程序中定义变量: range=a-b下面又有一行: for i in range(0,50):会发生此类报错,一般错误指向for i in range(0,50):一行
2021-07-30 10:12:13 759
原创 QP二次规划求最优权值
求解的最优权值w.P1=np.array([[np.dot(x1,x1),np.dot(x1,x2),np.dot(x1,x3)], [np.dot(x2,x1),np.dot(x2,x2),np.dot(x2,x3)], [np.dot(x3,x1), np.dot(x3,x2), np.dot(x3,x3)] ])P1=P1.astype('double')q1=np.array([-np.dot(x,x1),-np.dot(x,x2
2021-07-21 09:58:06 351
原创 python 字典数组中,获取某个键对应的所有值
id_list=[data['id'] for data in dict_unlabeled for key in data if key=='id']
2021-07-09 10:38:48 3249
原创 2020-11-15周总结
本周总结本周任务主要是:(1)复现了论文A Fast Semi-Supervised Clustering Framework for Large-Scale Time Series Data 的代码。(2)看了一点关于集成学习的东西。下周计划看两篇关于偏标记的论文,思考与待解决问题的相关信息。...
2020-11-20 11:44:51 86
原创 时间序列文件读取
def loda_file(filename): data = pa.read_csv(filename, header=None) # 分割除去第一列 data1 = data.iloc[:, 1:] data1 = np.array(data1) data1 = to_time_series_dataset(data1) return data1
2020-11-12 15:54:46 342 2
原创 20201108周总结
20201108周总结本周总结本周任务主要是:(1)阅读论文,看了一篇关于“ball k-means”和一篇关于“类内类间不平衡的多元时间序列聚类”的论文。(2)参照K-shape论文和其源码了解代码中对多维数组的处理方式以及一些数据的运算的过程。下周计划复现论文:A Fast Semi-Supervised Clustering Framework for Large-Scale Time Series Data 的代码...
2020-11-11 09:39:16 120
原创 20201026第一周周总结
本周总结本周任务主要是阅读论文,熟悉相关知识。1. K-Shape:Efficient and Accurate Clustering of Time Series 2015 SIGMOD本文以K-means为聚类方法,改进了基于时间序列形状的相似性度量方法和中心点计算方法。当前主流的时间序列相似性度量方法DTW,采用一对多方法计算,时间复杂度高。本文创新型的通过移动其中一个序列X,计算移动之后的序列X’与另一个序列Y之间的相似性。重新采用了一对一的计算方法,时间复杂度降低。2. ...
2020-11-11 09:37:23 151
原创 关键词查找
#include<stdio.h>02int main() {03 char word[6][50];04 int num[5] = { 0 };05 int i, j, k,flag;06 for (i = 0;i <= 5;i++) {07 scanf("%s", word[i]);08 fflush(stdin);09 ...
2018-05-10 19:59:05 286
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人