Ubuntu各个版本镜像下载地址(华为云)

<think>好的,用户想在华为云Ubuntu环境中部署DeepSeek模型。首先,我需要回顾之前提供的引用内容,看看有什么相关的步骤和建议。 根据引用[2],建议使用Ubuntu 20.04操作系统,安装Python 3.8及以上版本,并通过pip安装依赖。所以,用户的环境应该符合这个要求。接下来,引用[1]提到在华为云上部署的步骤,包括配置环境、下载模型和运行推理服务。而引用[3]虽然主要关于昇腾910B的本地部署,但可能配置文件的部分有参考价值。 首先,用户需要确保华为云的环境已经准备好,包括创建ECS实例,选择Ubuntu系统,配置安全组允许端口访问。这部分可能需要详细说明,比如如何创建实例,如何设置安全组规则,特别是如果需要Web访问的话,开放8000端口或者相关端口。 然后,安装必要的软件包,比如Python 3.8、pip、虚拟环境工具。这里需要注意Ubuntu默认可能安装了Python 3.8,但可能需要用户确认或升级。安装依赖的时候,可能需要使用华为镜像源来加速下载,特别是如果用户在国内的话,这样可以避免网络延迟。 接下来,下载DeepSeek模型。这里有两种方式,直接从官方仓库克隆或者从华为云OBS获取。用户可能需要根据具体情况选择,如果有权限问题或者模型较大,OBS可能更稳定。需要确保模型存放的目录正确,并且权限设置合适,避免运行时出现权限错误。 然后,配置环境变量和配置文件。根据引用[3],昇腾的环境可能需要设置一些特定的路径,比如`ASCEND_HOME`。不过,如果用户使用的是GPU实例,可能需要配置CUDA相关的环境变量,或者如果使用昇腾芯片,则需要安装对应的驱动和工具包。这里可能需要进一步明确用户使用的是哪种类型的实例,但根据问题描述,用户可能使用的是通用的Ubuntu环境,所以可能需要安装PyTorch等框架的支持。 编写启动脚本时,需要指定模型路径、监听地址和端口,确保服务可以正确启动。可能需要检查是否有依赖项缺失,或者是否需要调整参数如`max_length`或`temperature`来适应不同的推理需求。 测试服务部分,用curl命令发送请求,验证是否返回正确的响应。如果出现连接问题,可能需要检查防火墙设置,或者服务是否在正确的IP和端口上监听。 最后,建议用户参考华为云文档或联系技术支持,特别是如果遇到昇腾硬件相关的问题,可能需要特定的配置,如引用[3]中的配置文件路径。同时,提醒用户监控资源使用情况,确保实例的CPU、内存和存储足够支持模型运行。 用户可能遇到的问题包括依赖安装失败、模型下载慢、端口未开放、权限不足等,需要在步骤中提前给出解决建议,比如换源、使用sudo权限、检查安全组设置等。确保用户能够一步步完成部署,并在遇到问题时知道如何排查。</think>以下是在华为云Ubuntu环境中部署DeepSeek的详细步骤: ### 1. 环境准备 - **创建ECS实例**:在华为云控制台选择Ubuntu 20.04/22.04镜像,配置至少16GB内存、4核CPU、100GB存储的实例[^2] - **配置安全组**:开放SSH端口(22)和推理服务端口(默认8000) - **登录实例**:通过SSH连接:`ssh root@<公网IP>` ### 2. 安装基础依赖 ```bash # 更新系统 apt update && apt upgrade -y # 安装Python 3.8+ apt install python3.8 python3.8-venv python3-pip -y # 配置虚拟环境 python3.8 -m venv deepseek-env source deepseek-env/bin/activate ``` ### 3. 安装模型依赖 ```bash # 使用华为云镜像加速 pip config set global.index-url https://repo.huaweicloud.com/repository/pypi/simple # 安装深度学习框架 pip install torch==2.0.1 transformers==4.33.2 accelerate==0.23.0 ``` ### 4. 模型部署 ```bash # 创建模型目录 mkdir -p /opt/deepseek/models && cd /opt/deepseek # 方式一:从官方仓库下载 git clone https://github.com/deepseek-ai/DeepSeek-LLM.git # 方式二:从华为云OBS获取(推荐) wget https://obs.myhuaweicloud.com/deepseek/models/deepseek-7b-base.tar.gz tar -zxvf deepseek-7b-base.tar.gz ``` ### 5. 配置推理服务 ```bash # 创建启动脚本 cat > start_service.py <<EOF from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("/opt/deepseek/models") model = AutoModelForCausalLM.from_pretrained("/opt/deepseek/models") # 启动API服务 from flask import Flask, request app = Flask(__name__) @app.route('/generate', methods=['POST']) def generate(): inputs = request.json['prompt'] inputs = tokenizer(inputs, return_tensors="pt") outputs = model.generate(**inputs, max_length=512) return tokenizer.decode(outputs[0]) if __name__ == '__main__': app.run(host='0.0.0.0', port=8000) EOF ``` ### 6. 启动服务 ```bash # 后台运行服务 nohup python start_service.py > service.log 2>&1 & # 验证服务状态 curl -X POST http://localhost:8000/generate -H "Content-Type: application/json" -d '{"prompt": "你好"}' ``` ### 7. 昇腾加速配置(可选) 如需使用昇腾NPU加速: ```bash # 安装CANN工具包 wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/7.0.0/ascend-cann-toolkit_7.0.0_linux-x86_64.run chmod +x ascend-cann-toolkit_7.0.0_linux-x86_64.run ./ascend-cann-toolkit_7.0.0_linux-x86_64.run --install ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值