题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
暴力破解
第一种方法就是遍历全部的元素,然后找出最小的,时间复杂度为:O(n)
class Solution:
def minNumberInRotateArray(self, rotateArray):
minNum = 0
# 第一种方法,就是遍历所以的元素,找出最小的
for i in range(0, len(rotateArray)):
minNum = minNum if minNum < rotateArray[i] and minNum != 0 else rotateArray[i]
return minNum
方式2
上面的暴力破解方法,没有用到题目的特性,就是非递减排序的数组,这个时候我们就可以使用二分查找法,来找出最小的元素。
首先这个数组局部有序的,假设我们查询一个数,如找出最小是1
第一次比较的数为: 5,通过 3 < 5, 2 < 5, |5 - 3| < |5 - 2| ,所以从右边找
第二次比较: 5 > 1, 2 > 1,这个时候,它两边的数都比它小,说明它就是最小值。
这个时候,我们就需要将原来的 二分查找法变换一下
|a[middle] - left| < |a[middle] - right|
如果成立,就往右边查找
如果不成立,那就左边查找
如果 middle < left,middle < right时,那么就说明这个数是最小值
即比两边的数都更小
给定一个二分查找法的代码
class Solution:
# 二分查找法
# 有序的数组中使用
def bSearch(self, array, target):
left = 0
right = len(array) - 1
while left < right:
# 右移1位,相当于除以2
mid = (left + right) >> 1
if target == mid:
return mid
if target > mid:
left = mid + 1
else:
right = mid - 1
return None
if __name__ == '__main__':
print(Solution().bSearch([1,2,3,4,5,6,7,8,9,10], 8))
下面我们需要改进一下代码,让其能够找出我们的最小值。
# -*- coding:utf-8 -*-
class Solution:
# 二分查找法
# 有序的数组中使用
def minNumberInRotateArray(self, rotateArray):
if not rotateArray:
return None
left = 0
right = len(rotateArray) - 1
while left <= right:
middle = (left + right) >> 1
# middle 比两边的都小,说明是最小值
if rotateArray[middle] < rotateArray[middle - 1]:
return rotateArray[middle]
elif rotateArray[middle] < rotateArray[right]:
right = middle - 1
else:
left = middle + 1
return 0