【优化模型】工作人员的最优时间分配问题的研究

本文通过0-1规划模型研究了如何在最小时间成本下进行工作人员分配问题。建立模型,设定约束条件,利用Lingo求解,得出最优解。结果表明,最优解倾向于选择效率较高的人,且在某些情况下,为了满足约束,可能会选择非最优效率的人员。此外,代码实现展示了如何用Lingo找到全球最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、问题

 2、问题假设

 3、模型求解

 4、结果分析

5、代码实现


1、问题

由于每个人的工作效率不同,导致不同的分配方式会有不同的时间开销。本文建立了0-1规划模型对最少时间成本下的工作人员分配问题进行了研究。

本问题中首先确定第i人做或者不做第j工作将问题定量化,再以全部的工作时间为目标函数,最后使用Lingo对目标函数求最优解得出最终结果。

 2、问题假设

1.每个人都能在自己的花销时间内完成工作。

2.每个人只能做一个工作,即既不能同时做两个工作,也不能在一个工作做完后再做其他工作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式职场

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值