目录
一、工具定位与目标
工具名称:COZE 智能考试内容生成器
核心目标:用户上传 PDF 文档(如教材、课程讲义)后,通过 COZE 平台整合 OCR 文字识别、大语言模型与智能算法,自动提取核心知识点,生成考试考点、考纲框架及单选、多选、判断、简答等题型题库,帮助教师、培训机构、企业快速完成考试资料制作,提升出题效率与内容专业性。
应用场景:
- 学校教师基于教材生成学科考试资料;
- 培训机构围绕课程讲义制作职业资格考试题库;
- 企业培训部门针对内部培训文档创建考核试题;
- 在线教育平台批量生成课程配套练习题。
二、核心功能模块设计
1. PDF 文档读取与解析模块
- 多格式兼容:支持 PDF、PDF 扫描件等格式文档上传,利用 COZE 的文件处理组件自动识别文档类型。对于扫描件,调用 OCR 文字识别技术 ,将图片文字转化为可编辑文本,识别准确率达 95% 以上 。
- 文本结构化处理:
-
- 通过自然语言处理技术,对提取的文本进行段落划分、章节识别,构建文档内容树状结构。例如,区分教材中的章节标题、小节内容、案例分析等。
-
- 利用命名实体识别(NER)技术,提取关键实体(如人名、专业术语、重要概念),为后续考点提取做准备。
2. 考点与考纲生成模块
- 考点智能提取:
-
- 调用大语言模型(如 DeepSeek、GPT 系列),基于文档内容生成核心考点。模型通过分析文本中的重点语句、高频词汇、逻辑关系,提炼出考试需掌握的关键知识点。例如,在医学教材中识别疾病症状、治疗方法等考点 。
-
- 支持用户设置考点提取数量、难度等级等参数,调整生成结果。如设置 “提取 30 个中级难度考点”,模型优先筛选具有中等理解与应用难度的知识点。
- 考纲框架构建:
-
- 依据文档章节结构,自动生成考纲框架。以章节为单位,将考点分配到对应章节下,形成层次分明的考纲。例如,“第一章 细胞结构” 下包含 “细胞膜的组成与功能”“细胞器的分类与作用” 等考点 。
-
- 提供考纲模板库,用户可选择不同风格模板(如按知识模块、能力层级划分),快速调整考纲呈现形式。
3. 题库生成模块
- 单选题生成:
-
- 大语言模型从考点中提取关键信息,生成题干与选项。题干围绕考点核心内容设计,选项包含 1 个正确答案和 3 个干扰项。干扰项通过同义词替换、概念混淆等方式设置,增强题目迷惑性。例如,考点为 “计算机 CPU 型号”,生成题目 “下列哪款 CPU 属于 Intel 品牌?A. 锐龙 5 5600X B. 酷睿 i7-13700K C. 天玑 9000 D. 苹果 M1” 。
-
- 支持设置选项数量(3-5 个)、选项排列顺序(随机 / 固定)等参数。
- 多选题生成:
-
- 针对综合性考点,生成包含 2-4 个正确答案的多选题。模型确保选项间逻辑独立,且正确答案覆盖考点的多个方面。如考点为 “中国四大名著”,题目可为 “以下哪些作品属于中国四大名著?A. 《红楼梦》 B. 《聊斋志异》 C. 《西游记》 D. 《水浒传》” 。
- 判断题生成:
-
- 将考点内容转化为陈述语句,通过修改部分内容生成正误判断题。正确陈述直接来源于文档知识点,错误陈述通过改变概念、因果关系等方式设置。例如,“光合作用的场所是线粒体(错误,应为叶绿体)” 。
- 简答题生成:
-
- 围绕复杂考点或需阐述的知识点,生成简答题。题目要求考生对概念、原理、过程等进行详细回答,如 “简述凯恩斯主义的主要经济理论” 。大语言模型可提供参考答案框架,辅助用户完善答案内容。
4. 内容审核与优化模块
- 准确性审核:
-
- 对生成的考点、题目进行内容准确性检查。通过再次检索文档原文,核对知识点表述、数据、概念是否一致,避免出现错误。
-
- 利用大语言模型的逻辑校验功能,检查题目选项间的逻辑关系,确保无矛盾或重复。
- 难度均衡分析:
-
- 采用自然语言处理算法,分析题目文本复杂度、知识点覆盖范围等因素,评估题目难度。对难度过高或过低的题目进行调整,如修改题干表述、替换选项,使题库难度分布合理。
- 用户反馈优化:支持用户对生成内容提出修改意见,COZE 根据反馈调整生成策略,重新生成或优化相关内容,直至满足需求。
5. 输出与管理模块
- 多格式导出:支持以 DOCX、XLSX、PDF 格式导出考点、考纲与题库。DOCX 格式便于用户编辑修改;XLSX 格式适合批量管理题目,方便进行题目筛选、排序;PDF 格式确保内容格式稳定,便于打印和分享 。
- 题库分类管理:在 COZE 平台云端存储用户生成的考试资料,支持按学科、考试类型、创建时间等条件分类检索。用户可随时查看、编辑、删除历史内容,还能对题库进行版本管理,记录修改历史。
三、COZE 平台搭建流程
1. 触发与输入设计
- 指令触发:用户输入 “从 PDF 生成考试资料 + 文档名称”(如 “从《市场营销学》教材.pdf 生成考试资料”),上传 PDF 文档。
- 参数补充:支持追加指令设置考点数量、题型比例、难度等级、输出格式等参数(如 “考点数量:25 个,题型比例:单选 40%、多选 20%、判断 20%、简答 20%,难度等级:初级,输出格式:DOCX”)。
2. 工作流核心节点配置
3. 关键节点实现细节
- OCR 识别优化:对于模糊、字迹不清的 PDF 扫描件,在调用 OCR 接口前,先使用图像处理技术(如灰度化、降噪、二值化)对图片进行预处理,提升文字识别准确率。
- 大模型提示词优化:构建针对考试内容生成的提示词模板库。例如,生成单选题提示词模板为 “根据以下文档内容:[文档文本],围绕考点 [具体考点],生成 1 道单选题,包含 1 个正确答案和 3 个干扰项,答案需标注” 。根据不同题型、需求调整提示词,引导大模型生成高质量内容。
四、技术实现
1. 技术要点
- 大模型性能优化:对大语言模型进行轻量化处理,采用模型蒸馏、量化等技术,减少计算资源消耗,提升响应速度。同时,建立模型性能监控体系,实时监测生成质量和效率,及时调整优化策略。
- 数据增强与训练:收集大量教材、讲义、考试真题等数据,通过数据增强技术(如随机替换同义词、调整语序)扩充数据集,对大模型进行有监督微调,使其更适应考试内容生成任务。
五、迭代与扩展方向
- 智能组卷功能:根据用户设置的考试时长、总分、题型分布等要求,从题库中自动抽取题目组成完整试卷,并生成对应的答案解析与评分标准。
- 错题分析与拓展:对接在线考试系统,获取用户答题数据,分析错题知识点,生成针对性的拓展练习题和学习建议。
- 多语言支持:增加英语、日语、韩语等多语言文档处理与试题生成功能,满足国际化考试、语言学习等场景需求。
通过 COZE 的可视化流程搭建能力,可快速实现上述逻辑, 最终形成一个高效、合规的工具。如需进一步细化某个模块,可和我交流、提供更多开发参数或配置细节。