01背包讲解

01背包问题

题目:  

有N件物品和一个容量为V的背包。第i件物品的体积(或费用)是vol[i],价值是val[i]。求解将哪些物品装入背包可使价值总和最大。

 

基本思路:

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即dp[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

dp[i][v]=max{dp[i-1][v],dp[i-1][v-vol[i]]+val[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为dp[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-vol[i]的背包中”,此时能获得的最大价值就是dp[i-1][v-vol[i]]再加上通过放入第i件物品获得的价值val[i]。

 

优化空间复杂度:

以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1~N,每次算出来二维数组dp[i][0~V]的所有值。那么,如果只用一个数组dp [0~V],能不能保证第i次循环结束后dp[v]中表示的就是我们定义的状态dp[i][v]呢?dp[i][v]是由dp[i-1][v]和dp[i-1] [v-vol[i]]两个子问题递推而来,能否保证在推dp[i][v]时(也即在第i次主循环中推dp[v]时)能够得到dp[i-1][v]和dp[i-1][v -vol[i]]的值呢?事实上,这要求在每次主循环中我们以v=V~0的顺序推dp[v],这样才能保证推dp[v]时dp[v-vol[i]]保存的是状态dp[i -1][v-vol[i]]的值。伪代码如下:

for(i=1;i<=N;i++)
for(v=V;v>=0;v--)
dp[v]=max{dp[v],dp[v-vol[i]]+val[i]};

其中的dp[v]=max{dp[v],dp[v-vol[i]]}一句恰就相当于我们的转移方程dp[i][v]=max{dp[i-1][v],dp[i-1][v-vol[i]]},因为现在的dp[v-vol[i]]就相当于原来的dp[i-1][v-vol[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了dp[i][v]由dp[i][v-vol[i]]推知,与本题意不符,但它却是另一个重要的背包问题完全背包最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数vol、val分别表明这件物品的体积(费用)和价值。

void ZeroOnePack(int val,int vol)
{
    for(v=V;v>=vol;v--)
    dp[v]=max{dp[v],dp[v-vol]+val};
}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V~0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为vol的物品不会影响状态dp[0~vol-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for(i=1;i<=N;i++)
ZeroOnePack(val[i],vol[i]);

初始化的细节问题:

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了dp[0]为0其它dp[1~V]均设为-1,这样就可以保证最终得到的dp[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将dp[0~V]全部设为0。

为什么呢?可以这样理解:初始化的dp数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-1了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

 

一个常数优化:

前面的伪代码中有 for(v=V;v>=1;v--),可以将这个循环的下限进行改进。

由于只需要最后dp[v]的值,倒推前一个物品,其实只要知道dp[v-val[n]]即可。以此类推,对以第j个背包,其实只需要知道到dp[v-sum{val[j~n]}]即可,即代码中的

for(i=1;i<=N;i++)
for(v=V;v>=0;v++)
可以改成

for(i=1;i<=n;i++)
bound=max{V-sum{val[i~n]},vol[i]}
for(v=V;v>=bound;v--)
这对于V比较大时是有用的。

 

小结:

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

//01背包模板

#include <cstdio>
#include <memory.h>
 
int dp[10001],V;
 
inline int max(int a,int b)
{
    return a>b ? a : b;
}
 
void ZeroOnePack(int val,int vol)
{
    for(int v=V;v>=vol;v--)
    dp[v]=max(dp[v],dp[v-vol]+val);
}
 
int main()
{
    int n,val[1000],vol[1000];
    scanf("%d%d",&n,&V);
    for(int i=0;i<n;i++)
    scanf("%d",&val[i]);
    for(int i=0;i<n;i++)
    scanf("%d",&vol[i]);
 
    //两种不同的初始化:
    //memset(dp,0,sizeof(dp));    //只希望价格尽量大
    //memset(dp,-1,sizeof(dp)),dp[0]=0;    //要求恰好装满背包
 
    for(int i=0;i<n;i++)
    ZeroOnePack(val[i],vol[i]);
    printf("%d\n",dp[V]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值