自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 运用逻辑回归进行手写数字识别(基于R语言)

理论基础手写数字识别的本质是把手写数字灰度图片的256个特征作为预测变量,利用这256个特征判断这张图片写的是什么数字,即把该图片归入0、1、2…9这总共十个类中。根据《统计学习导论》4.3.5响应分类数超过2的逻辑回归里的表述,当响应变量的水平数量大于2时,依然可以把二分类的逻辑回归推广到多分类,例如当Y可取1、2、3时,可利用概率的性质P(Y=1|X)=1-P(Y=2|X)-P(Y=3|X)算出已知预测变量X后Y=1的概率,同理也可以算出Y=2、Y=3的概率,哪个概率大就把Y归入哪类,当然也可以根据实

2021-01-13 06:11:19 1490

原创 广义相加模型(GAM)与向前逐步选择算法(基于R语言)

广义可加模型(GAM)与向前逐步选择算法(基于R语言)一、题目(a)使用College数据集,以Outstate作为响应变量,其余作为预测变量,使用逐步回归得到一组合适的预测变量的子集。(b)将观测数据分成训练集和测试集。在训练集上拟合广义可加模型,将Outstate作为响应变量,逐步回归得到的结果作为预测变量。画出拟合结果,解释你的发现。(c)在测试集上评价前面得到的模型,并解释结果。(d)如果有的话,观察哪些变量和响应变量有非线性关系。二、向前逐步选择导入college数据集后,先进行数据的预处

2020-11-09 09:06:04 9130 2

原创 用R语言实现霍夫曼编码

可读性极低,而且其实也没必要用R语言写,图个乐罢了p=c(0.4,0.2,0.2,0.1,0.1)###输入形如c(0.4,0.2,0.2,0.1,0.1)的概率向量,即每个待编码消息的发生概率p1=p###将概率向量另存,最后计算编码效率要用mazijuzhen=matrix(,nrow=length(p),ncol=length(p)-1)###码字矩阵:第i行对应向量p的第i个分量所对应的那个待编码消息的编码后的码字group=matrix(c(1:length(p),rep(NA,le.

2020-06-02 10:24:04 63782

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除