28、异常检测算法参数与性能分析

异常检测算法参数与性能分析

1. 算法参数的隐藏变量

监督学习方法与所使用的基础分类器或回归模型相关联的参数,可通过交叉验证进行优化。因此,ALSO 方法在技术上是无参数的。不过,为提高效率,采用了简单的随机森林,包含 10 棵树,每个节点有 3 个袋装特征。需要注意的是,监督学习方法使用的学习器较弱,性能对基础学习器的鲁棒性较为敏感,所以这里展示的性能并非最优。使用更强的学习器在某些数据集上会导致计算问题,因此结果是基于特定参数选择得出的,以确保所有数据集具有相同的统一设置。

2. TRINITY:异构基础检测器的融合

为创建一个能在多个数据集上为从业者提供合理稳健结果的集成方法,推荐创建 TRINITY,它是三种不同基础检测器的异构组合:
1. 基于距离的组件 :使用原始基于距离的检测器(非 LOF 及其变体),k 值设为 5,并结合可变子采样以探索更广泛的参数空间。具体实现时,对精确 k 近邻检测器进行 100 次执行,子样本大小在 50 到 1000 点之间变化,将 100 次执行输出的分数平均,得到 n 维集成得分向量 E1。
2. 基于依赖的组件 :建议使用马氏方法或监督学习方法。由于监督学习方法计算效率低,推荐使用带可变子采样的非线性马氏方法。使用高斯核,核宽度 σ 设为点对之间中位距离的三倍。对基础检测器进行 100 次执行并平均得分,得到 n 维集成得分向量 E2。
3. 基于子空间密度的组件 :使用子空间方法处理数据中的无关特征,可选择子空间直方图或隔离森林。对基础检测器进行 100 次执行,子样本大小在 50 到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值