帧间预测单元划分流程

1  复杂的块划分结构和预测模式等面临的一个问题是如何选择最优块划分结构和预测模式等,换言之,就是在编码过程中如何评价块划分结构和预测模式等的优劣。造成这一问题的主要原因是,不同的块划分结构和预测模式等几乎对应着不同的失真和编码比特数,而失真和编码比特数属于不同的单位,无法直接比较大小,为了解决这个问题,Sullivan等将视频编码看作是凸优化,并利用拉格朗日优化将失真和编码比特数统一成码率失真代价。如下等式

J = (SSEy + Weight * SSEchrom)  + lambda * bitrate

其中J是码率失真代价,SSE sum of squard Error,平方误差和表示失真。SSEy表示亮度分量的失真。SSEchroma 表示色度分量的失真,Weightchroma 代表色度失真所占的权重,lambda 是拉格朗日系数。 码率失真代价的表示编码某个图像块或语法元素所产生的编码代价,它将失真和编码比特数统一成可以直接比较大小的量纲,码率失真代价越小,表示压缩性能越好。

    根据码率失真代价的含义,可以通过美剧的方式选择选择最优块划分结构和预测模式等,对于一个CU来说,根据公式可以计算出INTER模式,merge 模式和SKIP模式下的码率失真代价J。其中,码率失真代价最小的模式就是该CU的最佳帧间预测模式。

    图2-14所示为CTU的划分过程,最优块划分结构也可以通过对比码率失真代价得到,假设CTU的大小为64x64,则CTU最优块划分结构的选择流程如下

步骤一 计算leveli层CU不划分的码率失真大家,记为Junsplit

步骤二 计算lveli是CU倍划分为4个leveli + 1层的子CU的码率失真代价之和,记做Jsplit

步骤三,若Jsplit < J unsplit,则将CU划分成4个子CU,否则,当前CU不划分。

步骤四 若i> 0, 则令 i = i - 1.并递归执行步骤一到步骤三

根据上述递归函数可以计算出,一个64x64大小的CTU需要计算2^0 + 2^2 + 2^4 + 2^6 次码率失真代价才能选择出最优块划分的结构。

2.2 低复杂度HEVC帧间预测算法优化

利用视频在时域上的相关性进行帧间预测,使用已编码的帧的信息来预测当前的被编码图像,由于视频内容随着时间变化的变化比较缓慢,经过帧间预测编码之后,很多预测残差都是0,所以相对于视频编码的其他环节,帧间预测能取得非常高的压缩率,帧间预测采用了许多先进的算法,复杂度非常高。

 

内容概要:本文提出了一种针对高效率视频编码(HEVC)标准下开源编解码器x265的率失真复杂度优化(RDCO)算法。传统上,率失真优化主要关注编码比特限制下的失真最小化。但本文创新之处在于引入了计算复杂度这一关键因素,在编码过程中优化率失真性能的同时兼顾了计算复杂度的要求。为此,作者首先提出了基于绝对差值和(SAD)快速预测方法获取每个编码单元(CU)的R-D成本,并估算置信水平以评估CTU分区模式的可靠性。接着,计算了不同模式的计算复杂度并建立CLEC曲线,以此为基础进行合理的复杂度分配从而实现了最佳编码效果。实验结果显示提出的RDCO算法显著提高了编码性能,并能适应广泛的编码速度要求,在保持同等计算复杂度情况下相比原有x265降低了BD-rate最多19.73%,平均减少6.59%, 同时增加了BD-PSNR最高可达0.48dB以及平均水平为0.13dB。 适合人群:视频压缩领域的研究人员和技术专家,特别是那些对HEVC及其具体实现x265有兴趣或者正在寻求提高编码质量和速度的专业人士。 使用场景及目标:该方法特别适用于需要精细控制视频流编码过程中涉及到的时延迟和质量折衷的应用场景。比如直播视频传输中既要保障流畅播放又想尽量保留图像画质的情况。此外,本研究表明可以为不同设备提供灵活多变且高效的编码选项。 其他说明:文中提到的具体实验数据均来自于四个官方测试序列——ParkScene、Kimono、Cactus 和 BQTerrace 上的表现。而所提方法已经在多个其他高分辨率测试集如1080p视频片段进行了验证测试确保了结论普适性和实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值