辗转相除法
在引入扩展欧几里得算法之前,我们先对欧几里得算法(Euclidean algorithm,一般译作辗转相除法)进行分析,求解两个数的最大公约数方法有许多,在c++中还有标准库的__gcd()函数,而一般我们写的朴素算法是长这样的:
int gcd(int a,int b){
for(int i=min(a,b);i>=1;i--){
if(a%i==0&&b%i==0) return i;
}
}
这个算法的复杂度是O(min(a,b)),在a,b较大时十分低效,而利用辗转相除法可以使其复杂度降至O(log max(a,b))左右,实现如下
int gcd(int a,int b){
if(b==0) return a;
return gcd(b,a%b);
}
要证明这种方法的可行性,我们只要证明gcd(a,b)=gcd(b,a%b)即可,在此不做展开
扩展欧几里得算法
对于 ax+by=1这个式子,如果gcd(a,b)!=1,则方程无解,反之,我们可以扩展刚刚的辗转相除法求解:
假设求得了bx+(a%b)y=1的整数解x,y;
将a%b=a-(a/b)*b代入;
得到:ay+b(x-(a/b)*y)=1;
那么递归至b=0时,a*1+b*0=a=1;
代码实现如下:
int extgcd(int a,int b,int &x,int &y){
int ans=a;
if(b==0) {
x=1;
y=0;
}
else{
ans=extgcd(b,a%b,y,x);
y-=(a/b)*x;
}
return ans;
}