数论-扩展欧几里得算法

辗转相除法

在引入扩展欧几里得算法之前,我们先对欧几里得算法(Euclidean algorithm,一般译作辗转相除法)进行分析,求解两个数的最大公约数方法有许多,在c++中还有标准库的__gcd()函数,而一般我们写的朴素算法是长这样的:

int gcd(int a,int b){
    for(int i=min(a,b);i>=1;i--){
        if(a%i==0&&b%i==0) return i;
    }
}

这个算法的复杂度是O(min(a,b)),在a,b较大时十分低效,而利用辗转相除法可以使其复杂度降至O(log max(a,b))左右,实现如下

int gcd(int a,int b){
    if(b==0) return a;
    return gcd(b,a%b);
}

要证明这种方法的可行性,我们只要证明gcd(a,b)=gcd(b,a%b)即可,在此不做展开

扩展欧几里得算法

对于 ax+by=1这个式子,如果gcd(a,b)!=1,则方程无解,反之,我们可以扩展刚刚的辗转相除法求解:
假设求得了bx+(a%b)y=1的整数解x,y;
将a%b=a-(a/b)*b代入;
得到:ay+b(x-(a/b)*y)=1;
那么递归至b=0时,a*1+b*0=a=1;
代码实现如下:

int extgcd(int a,int b,int &x,int &y){
    int ans=a;
    if(b==0) {
        x=1;
        y=0;
    }
    else{
        ans=extgcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值