1、背景
随着各种直播、视频编辑APP的发展,美颜滤镜的需求也越来越多,应用场景也是越来越丰富。下面主要介绍下美颜滤镜的实现原理和思路,附带个人源码给大家参考。
目前在iOS里面美颜滤镜的实现基本上都是基于GPUImage处理框架。
2、GPUImage
GPUImage是一个开源的基于GPU的图片或视频的处理框架,其本身内置了多达120多种常见的滤镜效果。有了它,添加实时的滤镜只需要简单地添加几行代码。下面的例子是以摄像头的数据为源,对其实时地进行反色的操作(类似相片底片的效果):
self.videoCamera = [[GPUImageVideoCamera alloc] initWithSessionPreset:AVCaptureSessionPreset640x480 cameraPosition:AVCaptureDevicePositionFront];
self.videoCamera.outputImageOrientation = UIInterfaceOrientationPortrait;
self.videoCamera.horizontallyMirrorFrontFacingCamera = YES;
GPUImageColorInvertFilter *invert = [[GPUImageColorInvertFilter alloc] init];
[self.videoCamera addTarget:invert];
self.filterView = [[GPUImageView alloc] initWithFrame:self.view.frame];
self.filterView.center = self.view.center;
[self.view addSubview:self.filterView];
[invert addTarget:self.filterView];
[self.videoCamera startCameraCapture];
其实美颜也是一样,如果有这么一个美颜的滤镜(姑且叫做GPUImageBeautifyFilter),那么只需要把上面代码中的GPUImageColorInvertFilter替换成GPUImageBeautifyFilter即可。我们只需要做一个GPUImageBeautifyFilter就能实现实时美颜了,问题来了,到底什么算是美颜呢?我的理解是,大家对于美颜比较常见的需求就是磨皮、美白。当然提高饱和度、提亮之类的就根据需求而定。本文将着重介绍磨皮的实现(实际上GPUImageBeautifyFilter也实现了美白、提亮等效果)。
3、磨皮
磨皮的本质实际上是模糊。而在图像处理领域,模糊就是将像素点的取值与周边的像素点取值相关联。而我们常见的高斯模糊 ,它的像素点取值则是由周边像素点求加权平均所得,而权重系数则是像素间的距离的高斯函数,大致关系是距离越小、权重系数越大。下图3.1是高斯模糊效果的示例:
如果单单使用高斯模糊来磨皮,得到的效果是不尽人意的。原因在于,高斯模糊只考虑了像素间的距离关系,没有考虑到像素值本身之间的差异。举个例子来讲,头发与人脸分界处(颜色差异很大,黑色与人皮肤的颜色),如果采用高斯模糊则这个边缘也会模糊掉,这显然不是我们希望看到的。而双边滤波(Bilateral Filter) 则考虑到了颜色的差异,它的像素点取值也是周边像素点的加权平均,而且权重也是高斯函数。不同的是,这个权重不仅与像素间距离有关,还与像素值本身的差异有关,具体讲是,像素值差异越小,权重越大,也是这个特性让它具有了保持边缘的特性,因此它是一个很好的磨皮工具。下图3.2是双边滤波的效果示例:
双边滤波效果图3.2
对比3.1和3.2,双边滤波效果确实在人脸细节部分保留得更好,因此我采用了双边滤波作为磨皮的基础算法。双边滤波在GPUImage中也有实现,是GPUImageBilateralFilter。
根据图3.2,可以看到图中仍有部分人脸的细节保护得不够,还有我们并不希望将人的头发也模糊掉(我们只需要对皮肤进行处理)。由此延伸出来的改进思路是结合双边滤波,边缘检测以及肤色检测。整体逻辑如下:
Combination Filter是我们自己定义的三输入的滤波器。三个输入分别是原图像A(x, y),双边滤波后的图像B(x, y),边缘图像C(x, y)。其中A,B,C可以看成是图像矩阵,(x,y)可以看成其中某一像素的坐标。Combination Filter的处理逻辑如下图:
下面是主要的shader代码:
NSString * const kGPUImageBeautifyFragmentShaderString = SHADER_STRING
(
varying highp vec2 textureCoordinate;
varying highp vec2 textureCoordinate2;
varying highp vec2 textureCoordinate3;
uniform sampler2D inputImageTexture;
uniform sampler2D inputImageTexture2;
uniform sampler2D inputImageTexture3;
uniform mediump float smoothDegree;
void main()
{
highp vec4 bilateral = texture2D(inputImageTexture, textureCoordinate);
highp vec4 canny = texture2D(inputImageTexture2, textureCoordinate2);
highp vec4 origin = texture2D(inputImageTexture3,textureCoordinate3);
highp vec4 smooth;
lowp float r = origin.r;
lowp float g = origin.g;
lowp float b = origin.b;
if (canny.r < 0.2 && r > 0.3725 && g > 0.1568 && b > 0.0784 && r > b && (max(max(r, g), b) - min(min(r, g), b)) > 0.0588 && abs (r-g) > 0.0588) {
smooth = (1.0 - smoothDegree) * (origin - bilateral) + bilateral;
}
else {
smooth = origin;
}
gl_FragColor = smooth;
}
);
Combination Filter通过肤色检测和边缘检测,只对皮肤和非边缘部分进行处理。下面是采用这种方式进行磨皮之后的效果图:
最终磨皮效果图3.3
对比3.3与3.2,可以看到3.3对人脸细节的保护更好,同时对于面部磨皮效果也很好,给人感觉更加真实。
4.延伸
我所采用的磨皮算法是基于双边滤波的,主要是考虑到它同时结合了像素间空间距离以及像素值本身的差异。当然也不一定要采用双边滤波,也有通过改进高斯模糊(结合像素值差异)来实现磨皮的,甚至能取得更好的效果。另外GPUImageBeautifyFilter不仅仅具有磨皮功能,也实现了log曲线调色,亮度、饱和度的调整,具体详情可以参见demo 。