- 博客(13)
- 收藏
- 关注
原创 数据库SQL知识(一、数据库基本有点及MySQL的启用停止)
数据库的好处1.持久化数据到本地2.可以实现结构化查询,方便管理数据库相关概念1、DB:数据库,保存一组有组织的数据的容器2、DBMS:数据库管理系统,又称为数据库软件(产品),用于管理DB中的数据3、SQL:结构化查询语言,用于和DBMS通信的语言数据库存储数据的特点1、将数据放到表中,表再放到库中2、一个数据库中可以有多个表,每个表都有一个的名字,用来标识自己。表名具有唯一性。3、表具有一些特性,这些特性定义了数据在表中如何存储,类似java中 “类”的设计。4、表由列组成
2020-10-31 10:41:04 157
原创 基于python数据分析(Excel篇一:基础学习)
excel表格样式数据一般操作1.单元格的选取2.整行整列选取的方法 1,名称栏输入地址快速选定 2,选定单行(列),直接在工作表上面单机该行(列)的行(列)号即可 3,选定连续的行(列),单击起始行列号,按住shift点击最终行列号 4,选定不连续的区域,按住Ctrl键,点击需要选中的行列号3.验证数据审核1,选中目标区域2,点击“数据”,3,点击”数据工具“4,点击”数据验证“,打开对话框,进行设置这个用处非常多,包括设置性别选项只有两种男,女这两种选项。数据验证较好处
2020-10-19 18:19:30 485
原创 基于python数据分析(分析知识总结篇)
1.统计知识大全2.Excel技巧3.Edward Tufte(爱德华·塔夫特)图形原则体现出比较,对比,差异。体现出因果关系,机制,理由,系统结构。体现出多源数据,即体现出1个或2个变量。将文字,数字,图片,图形全面结合起来充分描述证据。数据分析报告的成败在于报告内容的质量,相关性和整体性。《出色的证据》4.数据透视表电子表格和数据分析软件中及其有效的数据分析工具,探索性数据分析和相关数据库数据汇总。5.非线性与多元回归多项式回归线,取代线性回归线多元回归技术6.原假设-
2020-10-07 20:52:18 636
原创 基于python数据分析(分析篇八:关系数据库/整理数据)
一、关系数据库 数据库就是一张表格或是一组表格,表格以某种方式对数据进行管理,是数据之间的相互关系显而易见,数据库软件则对表格进行管理。1.关系数据库管理系统关系数据库管理系统(RDBMS)只最重要最有效的数据管理方式之一RDBMS中每一行都有一把钥匙,通常称为ID(标识)数据库所要求的表格之间的关系都是量化关系SQL数据库相关知识,需要学习。二、整理数据/井然有序数据分析师,花在数据整理的时间是要比数据分析的时间。所以,数据整理的速度越快,工作就会完成的越快过程规划(准备)(保留原
2020-10-07 20:40:09 254
原创 基于python数据分析(分析篇七:预测/误差)
一、预测,回归算法:为了完成某个计算而执行的任何过程。1.散点图的使用只要是涉及到两种变量都应该使用(根本在于看出散点图两种变量中的之间的关系)散点图:用于展现数据快捷经典的方式,现实的是数据的分布情况,与直方图不同的是,散点图显示的两种变量,散点图现实出现观察结果的成对关系,一个好的散点图可以是原因说明的一个重要组成部分。2.直线的使用贯穿数据的直线有可能是有效的预测办法直线的来源:考虑我们尝试解决问题时,使用的算法散点图的合理分割,确定期望与实际相匹配的对象。有助于确定
2020-10-07 20:04:28 3526
原创 基于python数据分析(分析篇六:主观概率/启发法)
一、主观概率,数字信念化主观概率:把严谨融入主观的简便办法定义:用一个数字的形式表示对某事的确认程度,所用的就是主观概率。1.认识标准偏差数据集中的大部分点都会落在平均值的一个标准偏差范围内单位:取决于测量单位 作用:主观概率偏离平均的标准差越大,分析师在假设成立的可能性方面的差距就越大。方法:这个使用Excel可以解决,后续会做;也可以使用任何一门语言,c ,python ,java,等等一些列的语言进行编程解决。贝叶斯规则:使用主观概率得到的分析结果往往会有所偏差,我们需要重新修订我们
2020-10-06 20:15:14 304
原创 基于python数据分析(分析篇五:贝叶斯统计)
贝叶斯统计用途:帮助我们利用基础概率和波动数据做到明察秋毫一、条件概率条件概率是指事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为:P(A|B),读作“在B的条件下A的概率”。条件概率可以用决策树进行计算。(来源:百度百科)条件概率二、基础概率(事前概率)最原始的概率,比如患病的概率为1%,那么这个1%就为基础概率,也叫事前概率。警惕基础概率,基础概率书籍不会子啊每种情况下都存在,但是如果有数据但是我们并没有加以利用,那么我们就会毁于基础概率谬误,就是忽略事前数据并因此做出错
2020-10-06 19:09:43 799
原创 基于python数据分析(分析篇四:图形,假设)
数据图形化/假设检验一、数据图形化根本:正确的比较散点图:探索性数据分析的奇妙工具分析师利用散点图发现因果关系,就是两个事物之间的函数关系。我们最终的目的就是探索出,自变量影响因变量的原因。2.多元图形定义:一个图形能对三种以上的变量进行比较,这张图形就是多元图形。优点:有效的比较是数据分析的基础,于是尽量让图图形多元化最有可能促成最有效的比较。做法:同时展示多张图片,体现更多变量绘图软件:python基于numpy,pandas,matlibplot等数据库制作简单的比
2020-10-06 18:30:25 218
原创 基于python数据分析(分析篇三:最优化问题)
最优化问题最优化问题:当你尽可能多获得某种东西,而且为了实验这种目的需要改变其他一些量的值,这就是一个最优化的问题。遵循公式:决策变量*约束条件=最大化结果(一般最后合并成为一个目标函数,借助函数工具结局问题)任何的最优化问题都有一些约束条件和一些目标函数解决步骤进而确定可行域,确定目标函数在可行域内操作选择即可解决方法1.解决方法我们可以按照高中学过的最优解的方式解决,2.我们也可以用excel上的工具解决,3.也可以自己动手编写程序解决问题。注意:模型仅仅代表在
2020-10-06 14:34:25 702
原创 基于python的数据分析(分析篇二:分析方法)
观察实验法定义 :被研究的人自行决定自己是属于哪个群体的一种研究方法。一、实验,验证理论作用:好的实验帮助我们摆脱对观察数据的无限依恋,也能帮助我们理清因果关系,可靠的试验数据让我们的分析判断更加又说服力。关键1:随机(一定会是随机,这样的结果才尽可能的具备作用)虽然,人们说出来的话,跟他们的实际感受会有所区别,但是其实还是很有作用的。关键2:比较。(比较的越多,分析的结果越正确)通过对每个汇总数据进行明确的比较,得出有意义的发现,结论,或者说是有意思的地方。解释为什么会有这种作用。搜
2020-10-06 14:23:15 637
原创 基于python数据分析(番外篇一:心智模型)
正确认识心智模型在数据分析的过程中,心智模型非常,非常的重要。我们对外界的假设,以及我们确信的观点就是我们的心智模型。简单的比喻,大脑比作工具箱的话,心智模型就是种种的工具。心智模型决定我们发现问题的关键点。正确的了解我们的心智模型,我们发现重点,开发最相关最有用统计模型的可能性就越大。...
2020-10-05 18:02:32 410
原创 基于python数据分析(分析篇一:概论)
分解数据现在处理大量的数据可以说是每个人的必备技能。数据分析师,自然技高一筹,处理所有的数据材料,将其转化为推进现实工作的妙招。如何分解和构建复杂问题和数据集,进而把握住各种问题的要害一、数据分析师工作流程1.流程一Created with Raphaël 2.2.0理解数据数据清洗建模分析数据数据可视化yes2.流程二Created with Raphaël 2.2.0确定分解评估决策yes数据分析师要有自己的思想与灵魂,最终的表现就应该是参与决策,否则就会沦落成为一个取数作图,取数作图
2020-10-05 17:47:35 741
原创 基于python的数据分析(零)
基于python下的大数据分析(计划篇)计划用一年的时间学习数据分析的相关知识,以及参加相关竞赛,为以后找工作做铺垫。在这里做笔记,增加自己的印象的同时,对遇到相同问题的小伙伴希望有帮助个人相关信息1.目前大三,专业为电子信息工程。2.学过基础python编程3.学过基本的概率论及数理统计个人计划课时集中在前三天,每周都抽时间学习数据分析类的知识,并完成两篇笔记博客的书写,不定时的更新遇到的问题,以及解决方式。学习数据分析的原因1.咱们处于一个网络信息高度发达的21世纪,信息数据非常多,我
2020-10-03 13:58:37 130 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人