数值积分 (辛普森公式 辛普森自适应法则) UVA

该博客详细介绍了如何解决UVA 1356编程问题,重点关注数值积分的方法,特别是辛普森公式及其自适应法则的应用。通过对算法的深入探讨,读者将理解如何在实际问题中有效地实施这些数学工具。
摘要由CSDN通过智能技术生成
double F(double x) {
}
double simpson(double l, double r) {
	double m = (l + r) * 0.5;
	return (F(l) + 4 * F(m) + F(r)) * (r - l) / 6.0;
}
double asr(double l, double r, double eps, double A) {
	double m = (l + r) * 0.5;
	double L = simpson(l, m), R = simpson(m, r);
	if (fabs(L + R - A) <= 15 * eps)
		return L + R + (L + R - A) / 15.0;
	return asr(l, m, eps * 0.5, L) + asr(m, r, eps * 0.5, R);
}
double asr(double l, double r, double eps) {
	return 2.0 * asr(l, r, eps, simpson(l, r));
}
int dblcmp(double x) {
	if (x < -eps)
		return -1;
	return x > eps;
}



UVA 1356


#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<iostream>
#include<string>
#include<sstream>
#include<cctype>
#include<set>
#include<sta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值