字符串左移K次
首先需要判断K的大小,因为左移K次和左移K%str.length()效果是一样的。
所以第一步有必要:K = K%str.length();
方法一:
每次左移一位,需要运行K轮.
时间复杂度kn, 空间复杂度 1
方法二:
需要一块与字符串同样大小的额外存储空间。
假如元数组为a[1-n], 额外分配的空间为b[1-n], 那么实现左移K位以为可以按照以下的步骤进行。
1. 将a[k+1,n]拷贝到b[1,n-k]的位置上; 时间:n-k
2. 将a[1,k]拷贝到b[n-k+1,n]位置上; 时间:k
3. 将b[1,n]拷贝到a[1,n]的、位置上; 时间:n
总的时间复杂度是2n, 空间复杂度是n
方法三:
翻转字符串,步骤如下:
1. 将a[1,k]逆序
2. 将a[k+1,n]逆序
3. 将a[1,n]逆序
时间复杂度n ,空间复杂度 1
方法四:
因为将字符串左移k位的话,可以算出移位后位置。当前字符串第i位字符左移K位之后,所在的位置应该是(i-K+n)%n。
1. 在n%K != 0的时候,将第i位字符移到第j= (i-K+n)%n位,再将第j位上的字符移到 (j-K+n)%n, 以此类推迭代n次即可。
2. 在n%K = 0的时候,按照1移动的话,达不到期望的效果,迭代会在某一个组n/K个字符里面循环K次。
所以我们将字符串分组,每组的起始字符分别为a[1,2,3.,,,.K],组内按步骤1里面的方法迭代n/K次即可。
#include<iostream>
#include<string>
using namespace std;
string rotate(string str, int k)
{
int len = str.length();
if(len%k == 0)
{
for(int i = 0;i!=k;++i)
{
char tmp1 = str[i],tmp2;
int index = i;
for(int l = 0;l!=len/k;++l)
{
tmp2 = str[(index-k+len)%len];
str[(index-k+len)%len] = tmp1;
//cout<<tmp1<<" "<<tmp2<<" ";
tmp1 = tmp2;
//cout<<str<<endl;
index = (index-k+len)%len;
}
}
}
else{
char tmp1 = str[0],tmp2;
int index = 0;
for(int j = 0;j != len;++j)
{
tmp2 = str[(index-k+len)%len];
str[(index-k+len)%len] = tmp1;
cout<<tmp1<<" "<<tmp2<<" ";
tmp1 = tmp2;
cout<<str<<endl;
index = (index-k+len)%len;
}
}
return str;
}
int main()
{
int k;
string str("abcdefgh");
cin>>k;
cout<<rotate(str,k)<<endl;
getchar();
getchar();
return 0;
}