BZOJ 1036: [ZJOI2008]树的统计Count

9 篇文章 0 订阅
3 篇文章 0 订阅

BZOJ 1036: [ZJOI2008]树的统计Count


题目

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

  对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output

4
1
2
2
10
6
5
6
5
16

题目

树链剖分,(第一次写这个,代码里加了点说明)


题解

#include<cstdio>
#define INF 0x7fffffff
using namespace std;

int n,m,tot,sz,q;
int dep[30005],size[30005],lnk[30005],fa[30005],pos[30005],top[30005];
char s[10];
struct tree
{
    int l,r,sum,mx;
} tr[90005];
struct edge
{
    int nxt,y;
} e[60005];

int readln()
{
    int x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    while ('0'<=ch&&ch<='9') x=x*10+ch-48,ch=getchar();
    return x*f;
}

void add(int x,int y) //建边
{
    tot++;e[tot].nxt=lnk[x];lnk[x]=tot;e[tot].y=y;
    tot++;e[tot].nxt=lnk[y];lnk[y]=tot;e[tot].y=x;
}

int max(int x,int y){return x>y?x:y;}

void sort(int &x,int &y)
{
    int t=x;x=y;y=t;
}

void dfs(int x) //以1为根遍历统计以点x为根的子树的大小、点x的深度以及点x的父节点
{
    size[x]=1;
    for (int i=lnk[x];i;i=e[i].nxt)
    {
        int y=e[i].y;
        if (y==fa[x]) continue;
        dep[y]=dep[x]+1;fa[y]=x;
        dfs(y);
        size[x]+=size[y];
    }
}

void dfs1(int x,int to) //将树拆为n段重链,(可以证明有n≤log2(n)条重链),记录每条重链中,深度最小的那个节点,作为该重链的top节点
{
    int k=0,y=0;
    sz++;pos[x]=sz;
    top[x]=to;
    for (int i=lnk[x];i;i=e[i].nxt)
    {
        y=e[i].y;
        if (dep[y]>dep[x]&&size[y]>size[k]) k=y;
    }
    if (k==0) return;
    dfs1(k,to);
    for (int i=lnk[x];i;i=e[i].nxt)
    {
        y=e[i].y;
        if (dep[y]>dep[x]&&k!=y) dfs1(y,y);
    }
}

void build(int l,int r,int rt) //线段树的操作,应该就不用讲了吧......
{
    tr[rt].l=l;tr[rt].r=r;
    if (l==r) return;
    int mid=(l+r)>>1;
    build(l,mid,rt<<1);build(mid+1,r,rt<<1|1);
}

void update(int x,int y,int rt)
{
    int l=tr[rt].l,r=tr[rt].r;
    if (l==r) {tr[rt].sum=tr[rt].mx=y;return;}
    int mid=(l+r)>>1;
    if (x<=mid) update(x,y,rt<<1); else update(x,y,rt<<1|1);
    tr[rt].sum=tr[rt<<1].sum+tr[rt<<1|1].sum;
    tr[rt].mx=max(tr[rt<<1].mx,tr[rt<<1|1].mx);
}

int querys(int l,int r,int rt)
{
    int ll=tr[rt].l,rr=tr[rt].r;
    if (ll==l&&rr==r) return tr[rt].sum;
    int mid=(ll+rr)>>1;
    if (r<=mid) return querys(l,r,rt<<1);
    else if (mid<l) return querys(l,r,rt<<1|1);
    else return querys(l,mid,rt<<1)+querys(mid+1,r,rt<<1|1);
}

int querym(int l,int r,int rt)
{
    int ll=tr[rt].l,rr=tr[rt].r;
    if (ll==l&&rr==r) return tr[rt].mx;
    int mid=(ll+rr)>>1;
    if (r<=mid) return querym(l,r,rt<<1);
    else if (mid<l) return querym(l,r,rt<<1|1);
    else return max(querym(l,mid,rt<<1),querym(mid+1,r,rt<<1|1));
}

int solves(int x,int y) //统计sum,因为如果x,y不在同一条重链上,那么就需要不断把top节点较低的那个重链上的sum信息加入总sum中,直到xy在同一条重链上时,再用线段树统计一遍sum,才算是从xy路径上所有的点都走了一遍
{
    int sum=0;
    while (top[x]!=top[y])
    {
        if (dep[top[x]]<dep[top[y]]) sort(x,y);
        sum+=querys(pos[top[x]],pos[x],1);
        x=fa[top[x]];
    }
    if (pos[x]>pos[y]) sort(x,y);
    sum+=querys(pos[x],pos[y],1);
    return sum;
}

int solvem(int x,int y) //和上面那个操作差不多,只不过改成取最大值而已
{
    int mx=-INF;
    while (top[x]!=top[y])
    {
        if (dep[top[x]]<dep[top[y]]) sort(x,y);
        mx=max(mx,querym(pos[top[x]],pos[x],1));
        x=fa[top[x]];
    }
    if (pos[x]>pos[y]) sort(x,y);
    mx=max(mx,querym(pos[x],pos[y],1));
    return mx;
}

int main()
{
    n=readln();
    for (int i=1;i<n;i++) add(readln(),readln());
    dfs(1);dfs1(1,1);
    build(1,n,1);
    for (int i=1;i<=n;i++) update(pos[i],readln(),1);
    q=readln();
    while (q--)
    {
        scanf("%s",s);
        int x=readln(),y=readln();
        if (s[0]=='C') update(pos[x],y,1);
        else if (s[1]=='M') printf("%d\n",solvem(x,y));
        else printf("%d\n",solves(x,y));
    }
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一一个整数 $n$。 接下来 $n$ 每行 $n$ 个整数表示棋盘上每个点的数字。 输出格式 输出一个整数表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值