- 博客(21)
- 收藏
- 关注
原创 【深度学习】车轮检测与分割_vfnet_res2net模型实战
本文介绍了一种基于VFNet和Res2Net融合的车轮检测与分割模型。VFNet通过向量场引导机制优化边界框回归,Res2Net利用多尺度特征提取增强检测能力。融合模型结合两者优势,采用多任务学习策略同时优化检测和分割任务。研究构建了包含10,000张图像的车轮数据集,采用多种数据增强和正则化技术提升模型性能。实验表明该模型能有效处理不同大小、形状的车轮检测任务,在复杂环境下表现出色。未来研究可进一步优化模型在边缘设备上的部署效率。
2026-01-13 08:48:13
745
原创 使用VFNet模型实现车轮缺陷检测与分类_改进模型_r50-mdconv-c3-c5_fpn_ms-2x_coco
本文提出了一种基于改进VFNet模型的车轮缺陷检测与分类方法,针对工业环境中车轮缺陷检测面临的挑战(如小目标检测困难、复杂背景干扰等)进行了多项创新改进。通过改进C3模块、设计并行注意力结构和引入自适应学习率机制,显著提升了模型性能。实验结果显示,改进后的VFNet在自建数据集上达到91.5%的精确率和89.1%的召回率,相比原始模型提升显著。该系统已成功部署于铁路车辆段,满足实时检测需求。未来将研究轻量化模型、多模态融合等方向,进一步提升工业缺陷检测能力。
2026-01-13 08:24:58
809
原创 基于yolov10n的西瓜成熟度智能检测与分类系统实现详解
本文详细介绍了基于YOLOv10n的西瓜成熟度智能检测系统,该系统通过3383张预处理图像构建专用数据集,采用数据增强技术提升模型泛化能力。研究优化了YOLOv10n模型结构,调整损失函数,实现成熟度分类准确率达92%以上。系统包含图像采集、预处理、检测和后处理模块,支持实时检测(35ms/图),在不同光照条件下保持稳定性能。实验表明,系统对未成熟和成熟西瓜检测准确率超过93%,半成熟西瓜检测准确率89.7%。该系统可应用于农业生产自动化采摘、供应链分级筛选及消费选购辅助等场景,为西瓜产业提供智能化解决方案
2026-01-12 18:49:02
870
原创 YOLOv10n-MAFPN:西瓜目标检测模型改进与性能优化
本文提出了一种改进的YOLOv10n-MAFPN西瓜目标检测模型,通过融合多尺度特征金字塔网络(MAFPN)和注意力机制(CBAM),显著提升了检测性能。实验表明,改进后的模型mAP@0.5达到0.887,比基准模型提升6.5%,同时保持轻量级(2.1M参数)和实时性(48FPS)。消融实验验证了各改进模块的有效性,MAFPN贡献最大提升(3.5%)。该技术已成功应用于智能农业监测系统,通过边缘计算实现田间西瓜的实时检测与计数,为精准农业提供了有效解决方案。
2026-01-12 18:27:07
871
原创 基于Faster-RCNN_R50_PAFPN_1x_COCO:表面质量缺陷检测与分割优化方案
本文介绍了基于Faster R-CNN的表面质量缺陷检测系统。系统采用PySide6开发GUI界面,支持图片、视频、摄像头等多种输入方式,并具备登录管理功能。数据集包含5000张图像,涵盖8类常见缺陷。Faster R-CNN通过区域建议网络(RPN)和特征金字塔网络(FPN)实现高效检测,采用两阶段流程提高准确性。文章详细阐述了算法原理、数据集构建、系统实现和代码结构,包括模型训练和预测的关键代码片段。该系统为工业质检提供了智能化解决方案,具有实际应用价值。
2026-01-09 16:21:58
915
原创 Secondary链条检测识别_YOLOv8-SPPF-LSKA模型优化实现
本文提出了一种基于YOLOv8-SPPF-LSKA模型的Secondary链条检测算法,通过改进特征金字塔结构和引入轻量级空间注意力机制,有效解决了工业环境中链条检测面临的复杂背景干扰、多尺度目标识别等难题。该算法采用SPPF多尺度特征融合模块和LSKA轻量级空间注意力机制,在自建数据集上实现了87.1%的mAP@0.5和85.4%的召回率,相比原始YOLOv8分别提升了5.2%和7.8%。实验表明,该方法在保持实时检测速度的同时显著提升了检测精度,已成功应用于工业生产线。未来将探索更高效的注意力机制和3D
2026-01-09 16:01:29
729
原创 YOLOv5改进_GFPN网络结构提升纸箱包装目标检测效果_Python原创
本文提出了一种基于YOLOv5改进的GFPN网络结构,用于提升纸箱包装目标检测效果。该方法通过引入全局特征金字塔网络(GFPN),有效解决了传统YOLOv5在多尺度特征融合时的信息丢失问题。实验结果表明,改进后的YOLOv5s+GFPN模型在纸箱检测任务中mAP@0.5达到0.891,比原始模型提升8.3%,同时保持42FPS的实时性能。文章详细介绍了GFPN网络结构设计、实验验证及实际应用案例,并提供了Python实现代码。该方法特别适用于小尺寸、遮挡和复杂背景下的纸箱检测,已在工业生产线中取得96.7%
2026-01-07 09:08:25
928
原创 基于YOLO11-C3k2-PConv的卵母细胞和胚胎质量检测与分类系统
本文提出了一种基于改进YOLO11算法的卵母细胞和胚胎质量检测系统,通过集成C3k2模块和部分卷积(PConv)技术,实现了高精度自动化评估。系统采用多尺度特征融合和混合卷积结构,优化了形态特征提取能力。实验表明,该方法在精确率、召回率和mAP等指标上表现优异,能有效处理显微图像中的噪声和变异问题,为辅助生殖技术提供了可靠的自动化评估方案。
2026-01-06 18:42:14
961
原创 珠宝物品检测与识别_YOLO13-C3k2-HFERB模型应用分析
本文研究了基于改进YOLO模型的珠宝物品检测技术,提出了YOLO13-C3k2-HFERB模型。该模型通过C3k2模块增强多尺度特征提取能力,采用HFERB机制优化特征融合,显著提升了珠宝检测精度。研究构建了包含15,000张图像的多场景珠宝数据集,并设计了针对性的数据增强和训练策略。实验结果表明,该模型在mAP指标上达到88.7%,比YOLOv7提升3.6%,对小尺寸珠宝检测效果尤为突出,精度提升9.8%。模型在精度与速度间取得良好平衡,适合实际应用部署。
2026-01-04 09:28:04
842
原创 虹膜图像识别与分类:基于YOLO11-C2PSA-EDFFN的改进方法_1
本文提出了一种改进的虹膜识别方法YOLO11-C2PSA-EDFFN,通过引入C2PSA注意力机制和EDFFN特征融合网络提升识别性能。实验结果表明,该方法在公开数据集上达到98.2%的准确率和1.8%的EER,显著优于传统方法和标准YOLO11模型。消融实验验证了各模块的有效性。该方法可广泛应用于安防、金融和医疗等领域,未来可向轻量化、隐私保护和多模态融合方向发展。
2026-01-04 08:51:18
719
原创 如何使用YOLO11-seg-EfficientRepBiPAN模型进行离子检测与识别_1
YOLO11离子检测模型摘要 本摘要介绍了使用YOLO11-seg-EfficientRepBiPAN模型进行离子检测的完整流程: 数据集:包含100张离子图像,采用YOLOv8格式标注,划分为训练集(70)、验证集(20)和测试集(10) 数据增强: Mosaic增强(4图拼接) MixUp增强(图像混合) 随机旋转(±15°) 随机裁剪 颜色抖动 模型配置: 基于YOLO11-seg架构 支持检测和分割任务 使用data.yaml配置数据集路径和类别 训练流程: 100个epoch训练 批量大小16 图
2026-01-03 21:49:06
937
原创 基于RetinaNet的通信基站天线绝缘子缺陷检测算法及数据集验证分析
本文提出了一种基于改进RetinaNet的通信基站天线绝缘子缺陷检测方法。通过构建包含5000张图像的专业数据集(含5种缺陷类型),采用ResNet-50+FPN作为主干网络,并引入SE注意力机制提升特征提取能力。模型训练采用Focal Loss解决样本不平衡问题,结合余弦退火学习率调度和早停策略优化训练过程。实验结果表明,该方法能有效检测绝缘子表面污秽、裂纹、破损等缺陷,克服了环境复杂性、小目标检测等挑战,为通信基础设施安全监测提供了自动化解决方案。
2026-01-03 21:07:26
652
原创 YOLO11-AFPN-P345地板托盘对象检测模型训练与实现原创
本文提出了一种基于YOLO11-AFPN-P345的地板托盘检测模型,针对工业场景中托盘检测面临的尺度变化大、视角多变等挑战。该模型创新性地结合了AFPN自适应特征融合机制和P3-P5多尺度检测技术,通过动态调整特征融合权重和引入P3高分辨率检测层,显著提升了检测精度。实验结果表明,改进模型在自建数据集上mAP@0.5达到86.1%,相比基准模型提升3.8个百分点,尤其在小型托盘检测上表现突出。模型在保持实时性的同时,有效解决了复杂工业环境下的托盘检测问题。
2026-01-01 11:42:24
643
原创 【深度学习】【目标检测】基于YOLOv8与EMBSFPN的淡水鱼类智能识别系统_1
本文提出了一种基于YOLOv8与EMBSFPN的淡水鱼类智能识别系统。该系统结合YOLOv8目标检测框架和EMBSFPN特征融合网络,通过双向特征融合和多尺度注意力机制,有效提升了复杂水下环境中鱼类识别的准确性。系统采用专门的数据增强策略处理水下图像特性,并实现了模型量化和剪枝优化,在保持95%以上精度的同时达到30FPS实时处理速度。实验结果表明,该系统在10类淡水鱼类数据集上表现优异,为水产养殖、生态监测等领域提供了高效可靠的智能识别解决方案。
2026-01-01 10:57:39
539
原创 鱼眼新鲜度检测:基于FreeAnchor模型的实现与优化
本文提出了一种基于改进FreeAnchor模型(FF-FreeAnchor)的鱼眼新鲜度检测方法。针对传统检测方法主观性强、效率低的问题,该方法通过多模态特征增强、自适应权重分配和轻量化锚框生成等优化策略,显著提升了检测性能。实验结果表明,改进后的算法在准确率(92.6%)和推理速度(13.6ms)上均优于对比算法。原型系统测试验证了该方法的实用性和鲁棒性,为食品质量检测提供了高效解决方案。未来研究将扩大数据集规模并探索多模态融合技术。
2025-12-31 20:47:47
802
原创 如何使用YOLO12-A2C2f-CGLU模型进行灭火器类型识别与检测 深度学习模型训练与优化指南
本文介绍了基于YOLO12-A2C2f-CGLU模型的灭火器类型识别与检测方法。该模型通过A2C2f和CGLU模块增强了小目标检测和复杂背景适应能力,相比传统YOLO模型精度提升3-5%。文章详细阐述了数据集构建策略,包含5类灭火器样本及多种场景,并推荐了数据预处理方法。在训练配置方面,提供了硬件要求、软件环境和关键参数设置,强调学习率调度和动态批次调整策略。训练过程建议采用TensorBoard监控、检查点保存和早停机制,重点关注box_loss、cls_loss等指标变化。该方法适用于工业安全监控,可在
2025-12-31 20:10:26
774
原创 YOLO11-BiFPN:笔记本电脑表面划痕与污渍的高精度检测
本文提出了一种基于YOLO11和BiFPN网络的笔记本电脑表面缺陷检测方法。针对传统人工检测效率低、主观性强等问题,该方法通过改进的BiFPN结构增强多尺度特征融合能力,优化特征提取过程。实验结果表明,YOLO11-BiFPN在自建数据集上达到89.8%的mAP@0.5,相比YOLOv5提升7.5个百分点,尤其在小目标缺陷检测上表现优异。模型采用双向特征金字塔连接和自适应特征加权策略,有效提高了对划痕、污渍等微小缺陷的检测精度,同时保持11.2ms的推理速度,满足工业实时检测需求。消融实验验证了各模块的有效
2025-12-27 10:48:46
583
原创 YOLOv10n-MFM:改进目标检测模型在衰变任务中的应用与性能分析
本文提出了一种改进的YOLOv10n-MFM目标检测模型,用于工业设备衰变检测任务。通过引入多特征融合模块(MFM),结合多尺度特征提取、注意力机制和特征重组,有效提升了模型对复杂衰变特征的识别能力。实验结果表明,改进后的模型在自建数据集上达到89.3%的mAP,比原始YOLOv10n提升5.1个百分点,同时保持41.2FPS的实时检测速度。该模型已成功部署于工业生产线,在边缘设备上实现高效准确的衰变检测,为设备预测性维护提供了可靠的技术支持。
2025-12-27 10:25:51
695
原创 基于cascade-rcnn_r101_fpn的气缸夹具零件GBA-0129检测识别算法实现
本文摘要:本研究基于cascade-rcnn_r101_fpn算法实现气缸夹具零件GBA-0129的检测识别。针对工业场景中零件检测面临的多样性、尺寸差异和精度要求高等挑战,采用级联结构改进传统R-CNN,通过多检测头逐步提高IoU阈值以提升检测精度。实验使用包含42张图像的数据集,经数据增强后按7:2:1划分训练集、验证集和测试集。在NVIDIA Tesla V100 GPU上,采用Adam优化器(初始学习率0.002)训练24轮次,结合学习率衰减策略优化模型性能。研究为工业零件自动化检测提供了高精度解决
2025-12-26 18:42:07
871
原创 多类别害虫识别与检测:基于TridentNet-R50模型的智能识别系统实战详解_2
本文详细介绍了基于改进TridentNet-R50模型的多类别害虫智能识别系统。针对农业害虫检测面临的挑战,通过引入双向特征融合、坐标注意力机制和优化损失函数三项关键改进,显著提升了模型性能,特别是对小尺寸害虫的检测效果。实验表明,改进后的模型mAP达到88.8%,小目标召回率提升8.7%。系统支持云端和边缘设备部署,实际应用中检测准确率达87.3%,处理速度满足实时需求,可有效辅助精准农业管理,减少农药使用约20%。未来可进一步优化模型轻量化和多模态数据融合,提升系统实用性和适应性。
2025-12-26 18:19:18
896
原创 原理+手写代码实现
本文介绍了图像分割任务中的关键技术概念。首先阐述了编码器-解码器结构(如SegNet/RefineNet)的工作原理及其信息恢复的局限性。其次详细说明了上采样操作(双线性插值、转置卷积)和特征融合方法(concat/add)的特点与差异。然后介绍了特征金字塔网络(FPN)及其计算资源消耗问题。接着辨析了8位图、单通道图和灰度图的关系,指出本项目采用RGB转灰度图处理。最后说明了混淆矩阵和IoU作为分割任务评价指标的重要性。这些概念为图像分割任务提供了必要的技术基础。
2025-11-27 15:42:34
817
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅