问题描述:
日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完 后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?
题目分析:
这是一个递归问题,解决问题的关键在于每个人最后得到的桔子数是一样的,即2520/6=420(个)。
每一个兄弟原先所拥有的桔子数都和他从上一个兄弟得到的桔子数有关系,同时又与他给下一个兄弟的桔子数有关系,关键在于他们六个人连接成一个环状互相关联。所以要解决这个问题肯定得先打破这个环,而解决问题的关键就是老大。
其他人都是先得到后给出,而老大是先给出后得到,又通过老六把自己的1/3桔子给老大之后大家都一样多,也就是说老六剩下的2/3是和平均数一样,所以可以计算出老大得到的桔子数是210个,加上老大给出去之后是420个,所以老大给老二1/8之后是210个。所以老大原来有240个桔子,接下来就可以通过递归调用得到每一个人原先所拥有的桔子数。
具体实现代码如下:
package com._520it;
/**
* 分桔子问题
* @author Jack
* @date 2018-11-16
* @version 1.0
*/
public class Oranges {
public static void main(String[] args) {
oranges(240, 210, 1);
}
/**
* 计算每个人原先拥有的桔子数
* @param oldNum 每个人原先的桔子数
* @param getNum 每个人得到的桔子数
* @param n 已经轮到第几个人
* @return 每个人原来拥有的桔子数
*/
public static int oranges(int oldNum, int getNum, int n) {
if (n > 6) {
return 0;
} else {
// 输出每个人原先拥有的桔子数
switch (n) {
case 1:
System.out.println("老大原来拥有的桔子数为:" + oldNum);
break;
case 2:
System.out.println("老二原来拥有的桔子数为:" + oldNum);
break;
case 3:
System.out.println("老三原来拥有的桔子数为:" + oldNum);
break;
case 4:
System.out.println("老四原来拥有的桔子数为:" + oldNum);
break;
case 5:
System.out.println("老五原来拥有的桔子数为:" + oldNum);
break;
case 6:
System.out.println("老六原来拥有的桔子数为:" + oldNum);
break;
}
// 计算分给下一个人的桔子数
int nextGetNum = 0;
// 下一个人原来拥有的桔子数
int nextOldNum = 0;
if (n == 1) {
nextGetNum = oldNum / (9 - n);
} else {
nextGetNum = (oldNum + getNum) / (9 - n);
}
nextOldNum = 2520 / 6 * (8 - n) / (7 - n) - nextGetNum;
n = n + 1;
return oranges(nextOldNum, nextGetNum, n);
}
}
}
运行结果如下: