GPU Virtualization
认真的柯南
专注虚拟化,硬件显卡网卡加速,分布式机器学习系统优化
展开
-
Nvidia-docker 2.0体验
Nvidia-docker 2.0 的优于1.0的地方在于对K8S的支持。凭借 兼容 Kubernetes 的 device plugin 机制,极大的提高了其使用性能,本文将手把手教你安装运行。安装显卡驱动以及CUDA1. 通过“lspci” 功能来验证显卡,目前只能支持CUDA兼容的NVIDIA显卡lspci | grep VGA00:02.0 VGA compatible ...原创 2019-01-24 06:21:12 · 1671 阅读 · 0 评论 -
GPU passthrought setup for Nvidia V100 (Part I)
This is an instruction based on V100 and GPU compute purpose only. There will be two parts for this instruction, Host setup and Guest Setup Part one: HOSTPart two: GuestPlease make sure using Nv...原创 2019-01-20 09:06:09 · 1095 阅读 · 0 评论 -
GPU passthrought setup for Nvidia V100 (Part II)
Part one: HOSTPart two: Guest Part Two Guest Installment by virt-manager 1.1 Make sure you are installing a VM with UEFI mode1.2 Make sure Your HOST is SLES12SP2 and so on1.3 Still need...原创 2019-01-20 09:07:00 · 963 阅读 · 0 评论 -
在新Linux内核中体验GPU虚拟化
从内核4.10, 支持 virtual gpu 的代码开始汇入主线程。这部分代码主要由两部分组成:首先, mediated 设备框架(mdev),基本上,这部分代码使得内核驱动开始用vfio框架跟接口来支持虚拟pci设备。nvidia 以及intel都采用了这种所谓的mdev机制,将宿主机中的物理GPU分割成多个虚拟设备,以便供多个虚拟机同时使用。第二个, intel 的i915驱动也是采...翻译 2019-01-21 02:40:52 · 4390 阅读 · 0 评论 -
GPU虚拟化之前世今生
如今的显卡市场主要由AMD,Intel,Nvidia三家统治,然后Nvidia一家独大。尤其是N家提出的CUDA(Compute Unified Device Architecture)统一计算架构更是一骑绝尘,完全统治了GPGPU(计算为目的的GPU)市场。目前GPU虚拟化并不能在所有的硬件里操作,正如DPDK对于网卡一样, 目前只有一些高端显卡才能实现。毕竟这是由它的需求客户场景所决定的,...原创 2019-01-22 05:08:35 · 1546 阅读 · 0 评论 -
GPU虚拟化之硬件纵横
前面讲到GPU厂家目前是AMD Intel Nvidia三家鼎立,但是Nvidia一家独大,但是虚拟化领域AMD凭借其硬件实现的专利而独占先机,可惜没有好好利用这个优势,被Intel跟Nvidia的mdev软件实现拔得头筹,在4.10中率先实现主线内核支持。下面将对各家支持GPU虚拟化的产品作简要说明。1. IntelIntel目前只有集成显卡,也就是说Intel只有GPU核心,而没有独立...原创 2019-01-22 11:27:37 · 1439 阅读 · 0 评论 -
qemu中的新版vga仿真
让我们先来了解一下历史:VGA起源:VGA 由IBM在1987年提出。 它有一些列的新功能,同时也兼容它的那些前辈如CGA跟EGA的所有功能:1. 文本模式(80x25,字体小一下的话也可以支持80x50)2. 16色模式(640x480,四位色)3. 256色模式(320x240, 8位色)4. 也支持用户自定义一些操作,例如双重扫描或者分屏操作 VGA 具有了2...翻译 2019-01-22 09:52:33 · 7743 阅读 · 0 评论 -
OpenCL Caffe:一个可跨平台的快速机器学习框架
这篇2016年的论文阐述了深度学习框架Caffe的一个新分支。更具体的说,这是一个用支持开放工业标准的OpenCL后端取代了基于CUDA(闭源)后端的分支。代码最初存放在https://github.com/amd/OpenCL-caffe,成熟后合并到Caffe的官方地址下https://github.com/amd/OpenCL-caffe。在开发一个DNN(深度神经网络)模型的时候...翻译 2019-02-01 04:15:07 · 2030 阅读 · 0 评论