大话数据结构——无向图图的建立~邻接矩阵~基础中的基础~2020.7.5

本文介绍了图论中的基础概念——无向图的邻接矩阵表示方法。通过邻接矩阵,可以存储图中顶点之间的权值。在建立无向图时,应注意权值的双向对称性,初始化时要考虑自环的权值为0以及非连通顶点间的权值为无穷大。邻接矩阵作为图论算法如弗洛伊德和迪杰斯特拉算法的基础,对于理解和应用数据结构至关重要。
摘要由CSDN通过智能技术生成

邻接矩阵存储图的信息应该是图论的基础了。邻接矩阵指的是建立一个二维数组,显然,为了表示数组中的一个值,需要调用两个下标,第一个下标表示顶点a,第二个下标表示顶点b,a到b的权值便存储在二维数组中。
特别注意
①建立无向图时,录入权值时需要考虑两个方向,即,从a顶点到b顶点与从b顶点到a顶点的权值相等,需做一次赋值的操作。
②邻接矩阵中,自己到自己的距离显然是零,需在初始化时考虑。
③邻接矩阵中,显然有不连通的两个顶点,此时二者之间的权值应赋值为正无穷。解决的方法是:在初始化邻接矩阵时,同时考虑为“自己到自己”的顶点赋零,并使每个顶点到另一个顶点的权值赋值为无穷(INFINITY,此处取值65535)。
话不多说,直接上代码:

#include <iostream>
#include <cstdio>
#define MAXVEX 1005
#define INFINITY 65535
using namespace std;
typedef char VertexType;//定点类型 
typedef int EdgeType;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值