毕业设计 医学大数据分析-心血管疾病分析

本文介绍了如何利用包含12个特征的大数据集,如年龄、血压等,通过Python工具进行心血管疾病预测。作者详细描述了数据处理过程,包括数据清洗、特征分析和可视化,以发现患病风险因素,如年龄、胆固醇和饮酒习惯。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

🚩 基于大数据的心血管疾病分析

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 选题指导, 项目分享:见文末

1 课题背景

本项目的任务是利用患者的检查结果预测心血管疾病(CVD)的存在与否。

2 数据处理

数据集包括年龄、性别、收缩压、舒张压等12个特征的患者数据记录7万份。

当患者有心血管疾病时,目标类“cardio”等于1,如果患者健康,则为0。

数据描述

有三种类型的输入特征:

  • Objective: 客观事实;
  • Examination: 体检检查结果;
  • Subjective: 病人提供的信息

在这里插入图片描述
数据信息概览

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import os


df.head()

在这里插入图片描述
变量分析

df.info()

在这里插入图片描述
所有特征都是数字,12个整数和1个小数(权值)。第二列告诉我们数据集有多大,每个字段有多少非空值。
我们可以使用’ describe() ‘来显示每个属性的样本统计信息,比如’ min ‘、’ max ‘、’ mean ‘、’ std ':

评论

df.describe()

在这里插入图片描述
年龄以天为单位,身高以厘米为单位。
让我们看看数值变量以及它们是如何在目标类中分布的。
例如,什么年龄患有心血管疾病的人数超过没有心血管疾病的人数?

3 数据可视化

from matplotlib import rcParams
rcParams['figure.figsize'] = 11, 8
df['years'] = (df['age'] / 365)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值