那个转化太毒瘤了
首先全集减补集请看图(原谅我的surface没有带笔手画的)
(n+m,n-m)表示一个状态,是指x坐标为n个1+m个0,y坐标是指n个1-m个0,明显答案态(n+m,n-m)
然后那么如果第i位选1那么就是从第i-1这个状态转移,向右上走一步,同理,0为向右下走一步。
那么易得这样终态为(n+m,n-m)的情况为C(n+m,m)
那么这没有考虑限制对吧
限制的本质是出现i-1转移点是从负y半轴过来的。
那么考虑对称,如图,将0,0与0,-2看做同一点(初中学过对吧)
然后限制情况的本质是从(0,-2)走到(n,m-1)因为一个向右下走变成了向右上走
为C(n+m,m-1)
那么求大组合数嘛
fac乘上去
费马小定理求一个逆元
inv推下来(完)
然后愉快获得70p
为何
你是C(n+m,m)-C(n+m,m-1)
加mod取mod
#include<bits/stdc++.h>
using namespace std;
typedef int INT;
#define int long long
const int N=2e6+100;
const int maxn=2e6+10;
const int mod=20100403;
int inv[N]={};
int fac[N]={};
int quick_pow(int x,int k){
int ret=1;
while(k){
if(k%2==1)
ret=(ret*x%mod+mod)%mod;
k/=2;
x=((x*x)%mod+mod)%mod;
}
return ret;
}
void pre(){
fac[0]=1;
for(int i=1;i<=maxn;i++){
fac[i]=(fac[i-1]*i%mod+mod)%mod;
}
// cout<<fac[10]<<'\n';
inv[maxn]=quick_pow(fac[maxn],mod-2);
for(int i=maxn-1;i;i--){
inv[i]=(inv[i+1]*(i+1)%mod+mod)%mod;
}
}
int C(int y,int x){
return (fac[x]*inv[x-y]%mod*inv[y]%mod+mod)%mod;
}
INT main(){
int n,m;
pre();
// cout<<quick_pow(2,10);
cin>>n>>m;
// cout<<C(2,3);
cout<<((C(m,n+m)-C(m-1,n+m))%mod+mod)%mod;
}