省选专练【SCOI2010】字符串

12 篇文章 0 订阅
7 篇文章 0 订阅

那个转化太毒瘤了


首先全集减补集请看图(原谅我的surface没有带笔手画的)

(n+m,n-m)表示一个状态,是指x坐标为n个1+m个0,y坐标是指n个1-m个0,明显答案态(n+m,n-m)

然后那么如果第i位选1那么就是从第i-1这个状态转移,向右上走一步,同理,0为向右下走一步。

那么易得这样终态为(n+m,n-m)的情况为C(n+m,m)

那么这没有考虑限制对吧

限制的本质是出现i-1转移点是从负y半轴过来的。

那么考虑对称,如图,将0,0与0,-2看做同一点(初中学过对吧)

然后限制情况的本质是从(0,-2)走到(n,m-1)因为一个向右下走变成了向右上走

为C(n+m,m-1)

那么求大组合数嘛

fac乘上去

费马小定理求一个逆元

inv推下来(完)

然后愉快获得70p

为何

你是C(n+m,m)-C(n+m,m-1)

加mod取mod

#include<bits/stdc++.h>
using namespace std;
typedef int INT;
#define int long long
const int N=2e6+100;
const int maxn=2e6+10;
const int mod=20100403;
int inv[N]={};
int fac[N]={};
int quick_pow(int x,int k){
	int ret=1;
	while(k){
		if(k%2==1)
			ret=(ret*x%mod+mod)%mod;
		k/=2;
		x=((x*x)%mod+mod)%mod; 
	}
	return ret;
}
void pre(){
	fac[0]=1;
	for(int i=1;i<=maxn;i++){
		fac[i]=(fac[i-1]*i%mod+mod)%mod;
	}
//	cout<<fac[10]<<'\n';
	inv[maxn]=quick_pow(fac[maxn],mod-2);
	for(int i=maxn-1;i;i--){
		inv[i]=(inv[i+1]*(i+1)%mod+mod)%mod;
	}
}
int C(int y,int x){
	return (fac[x]*inv[x-y]%mod*inv[y]%mod+mod)%mod;
}
INT main(){
	int n,m;
	pre(); 
//	cout<<quick_pow(2,10);
	cin>>n>>m;
//	cout<<C(2,3);
	cout<<((C(m,n+m)-C(m-1,n+m))%mod+mod)%mod;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值