能量石
原题链接
题目描述
岩石怪物杜达生活在魔法森林中,他在午餐时收集了 N 块能量石准备开吃。
由于他的嘴很小,所以一次只能吃一块能量石。
能量石很硬,吃完需要花不少时间。
吃完第 i 块能量石需要花费的时间为 Si 秒。
杜达靠吃能量石来获取能量。
不同的能量石包含的能量可能不同。
此外,能量石会随着时间流逝逐渐失去能量。
第 i 块能量石最初包含 Ei 单位的能量,并且每秒将失去 Li 单位的能量。
当杜达开始吃一块能量石时,他就会立即获得该能量石所含的全部能量(无论实际吃完该石头需要多少时间)。
能量石中包含的能量最多降低至 0。
请问杜达通过吃能量石可以获得的最大能量是多少?
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含整数 N,表示能量石的数量。
接下来 N 行,每行包含三个整数 Si,Ei,Li。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y,其中 x 是组别编号(从 1 开始),y 是可以获得的最大能量值。
数据范围
1≤T≤10,
1≤N≤100,
1≤Si≤100,
1≤Ei≤105,
0≤Li≤105
输入样例:
3
4
20 10 1
5 30 5
100 30 1
5 80 60
3
10 4 1000
10 3 1000
10 8 1000
2
12 300 50
5 200 0
输出样例:
Case #1: 105
Case #2: 8
Case #3: 500
样例解释
在样例#1中,有 N=4 个宝石。杜达可以选择的一个吃石头顺序是:
吃第四块石头。这需要 5 秒,并给他 80 单位的能量。
吃第二块石头。这需要 5 秒,并给他 5 单位的能量(第二块石头开始时具有 30 单位能量,5 秒后失去了 25 单位的能量)。
吃第三块石头。这需要 100 秒,并给他 20 单位的能量(第三块石头开始时具有 30 单位能量,10 秒后失去了 10 单位的能量)。
吃第一块石头。这需要 20 秒,并给他 0 单位的能量(第一块石头以 10 单位能量开始,110 秒后已经失去了所有的能量)。
他一共获得了 105 单位的能量,这是能获得的最大值,所以答案是 105。
在样本案例#2中,有 N=3 个宝石。
无论杜达选择吃哪块石头,剩下的两个石头的能量都会耗光。
所以他应该吃第三块石头,给他提供 8 单位的能量。
在样本案例#3中,有 N=2 个宝石。杜达可以:
吃第一块石头。这需要 12 秒,并给他 300 单位的能量。
吃第二块石头。这需要 5 秒,并给他 200 单位的能量(第二块石头随着时间的推移不会失去任何能量!)。
所以答案是 500。
题目分析
要点1:排序
对于两块石头
i
i
i 和
i
+
1
i+1
i+1 ,
若先吃
i
i
i,后吃
i
+
1
i+1
i+1,则得到的能量为
E
i
′
+
E
i
+
1
′
−
S
i
∗
L
i
+
1
Ei '+Ei+1'-Si*Li+1
Ei′+Ei+1′−Si∗Li+1 (
i
i
i 目前能量加上
i
+
1
i+1
i+1 目前能量减去吃
i
i
i 所花费时间下 石头
i
+
1
i+1
i+1 损耗的能量)
若先吃
i
+
1
i+1
i+1,后吃
i
i
i,则得到的能量为
E
i
′
+
E
i
+
1
′
−
S
i
+
1
∗
L
i
Ei '+Ei+1'-Si+1*Li
Ei′+Ei+1′−Si+1∗Li (
i
i
i 目前能量加上
i
+
1
i+1
i+1 目前能量减去吃
i
+
1
i+1
i+1 所花费时间下 石头
i
i
i 损耗的能量)
对比上述两个式子,
当
E
i
′
+
E
i
+
1
′
−
S
i
∗
L
i
+
1
>
E
i
′
+
E
i
+
1
′
−
S
i
+
1
∗
L
i
Ei '+Ei+1' −Si∗Li+1>Ei '+Ei+1'-Si+1*Li
Ei′+Ei+1′−Si∗Li+1>Ei′+Ei+1′−Si+1∗Li 时,
即
S
i
∗
L
i
+
1
<
S
i
+
1
∗
L
i
Si*Li+1<Si+1*Li
Si∗Li+1<Si+1∗Li 即
S
i
/
S
i
+
1
<
L
i
/
L
i
+
1
Si/Si+1<Li/Li+1
Si/Si+1<Li/Li+1 时,
先吃
i
i
i 后吃
i
+
1
i+1
i+1 获得的能量更高。
所以,我们选择先吃
i
i
i。
综上,最优方案中,吃能量石的顺序一定遵循 S i / S i + 1 < L i / L i + 1 Si/Si+1<Li/Li+1 Si/Si+1<Li/Li+1
因此,在处理前,我们先将石头按照上述要求 排序 。
struct Stone{
int s,e,l;
//运算符'<'重载
bool operator< (const Stone &W) const{
return s*W.l<l*W.s;
}
}stone[N];
(运算符重载不理解的可参考该篇博客C++对bool operator < (const p &a)const的运算符重载详解
)
要点2:状态计算
闫氏DP分析法
与01背包问题思考相似,01背包问题模型详解(点击链接跳转)
可得,状态转移计算方程为 f [ i , j ] = m a x ( f [ i − 1 , j ] , f [ i − 1 , j − s ] + e − ( j − s ) ∗ l ) f[i,j]=max(f[i-1,j],f[i-1,j-s]+e-(j-s)*l) f[i,j]=max(f[i−1,j],f[i−1,j−s]+e−(j−s)∗l)
进行一维优化后得到 f [ j ] = m a x ( f [ j ] , f [ j − s ] + e − ( j − s ) ∗ l ) f[j]=max(f[j],f[j-s]+e-(j-s)*l) f[j]=max(f[j],f[j−s]+e−(j−s)∗l)
完整代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=10010;
int n;
int f[N];
//能量石结构体
struct Stone{
int s,e,l; //吃掉能量石所花时间s;所得能量e;耗损能量l
//运算符重载
bool operator< (const Stone &W) const{
return s*W.l<l*W.s;
}
}stone[N];
int main(){
int T;
cin>>T;
for(int C=1;C<=T;C++){
int m=0; //总时间
cin>>n;
//读入能量石属性
for(int i=0;i<n;i++){
int s,e,l;
cin>>s>>e>>l;
stone[i]={s,e,l};
m+=s;
}
//排序
sort(stone,stone+n);
//初始化
memset(f,-0x3f,sizeof f);
f[0]=0;
//遍历物品
for(int i=0;i<n;i++){
int s=stone[i].s,e=stone[i].e,l=stone[i].l;
//遍历体积
for(int j=m;j>=s;j--)
f[j]=max(f[j],f[j-s]+e-(j-s)*l); //状态计算
}
int res=0;
for(int i=0;i<=m;i++) res=max(res,f[i]); //f中的最大值为最终答案
printf("Case #%d: %d\n",C,res);
}
return 0;
}