动态规划DP 背包问题 能量石(题目分析+C++完整代码)

概览检索
动态规划DP 概览(点击链接跳转)
动态规划DP 背包问题 概览(点击链接跳转)在这里插入图片描述

能量石

原题链接

AcWiing 734. 能量石

题目描述

岩石怪物杜达生活在魔法森林中,他在午餐时收集了 N 块能量石准备开吃。
由于他的嘴很小,所以一次只能吃一块能量石。
能量石很硬,吃完需要花不少时间。
吃完第 i 块能量石需要花费的时间为 Si 秒。

杜达靠吃能量石来获取能量。
不同的能量石包含的能量可能不同。
此外,能量石会随着时间流逝逐渐失去能量。
第 i 块能量石最初包含 Ei 单位的能量,并且每秒将失去 Li 单位的能量。
当杜达开始吃一块能量石时,他就会立即获得该能量石所含的全部能量(无论实际吃完该石头需要多少时间)。
能量石中包含的能量最多降低至 0。

请问杜达通过吃能量石可以获得的最大能量是多少?

输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含整数 N,表示能量石的数量。
接下来 N 行,每行包含三个整数 Si,Ei,Li。

输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y,其中 x 是组别编号(从 1 开始),y 是可以获得的最大能量值。

数据范围
1≤T≤10,
1≤N≤100,
1≤Si≤100,
1≤Ei≤105,
0≤Li≤105

输入样例:

3
4
20 10 1
5 30 5
100 30 1
5 80 60
3
10 4 1000
10 3 1000
10 8 1000
2
12 300 50
5 200 0

输出样例:

Case #1: 105
Case #2: 8
Case #3: 500

样例解释
在样例#1中,有 N=4 个宝石。杜达可以选择的一个吃石头顺序是:
吃第四块石头。这需要 5 秒,并给他 80 单位的能量。
吃第二块石头。这需要 5 秒,并给他 5 单位的能量(第二块石头开始时具有 30 单位能量,5 秒后失去了 25 单位的能量)。
吃第三块石头。这需要 100 秒,并给他 20 单位的能量(第三块石头开始时具有 30 单位能量,10 秒后失去了 10 单位的能量)。
吃第一块石头。这需要 20 秒,并给他 0 单位的能量(第一块石头以 10 单位能量开始,110 秒后已经失去了所有的能量)。
他一共获得了 105 单位的能量,这是能获得的最大值,所以答案是 105。

在样本案例#2中,有 N=3 个宝石。
无论杜达选择吃哪块石头,剩下的两个石头的能量都会耗光。
所以他应该吃第三块石头,给他提供 8 单位的能量。

在样本案例#3中,有 N=2 个宝石。杜达可以:
吃第一块石头。这需要 12 秒,并给他 300 单位的能量。
吃第二块石头。这需要 5 秒,并给他 200 单位的能量(第二块石头随着时间的推移不会失去任何能量!)。
所以答案是 500。

题目分析

要点1:排序

对于两块石头 i i i i + 1 i+1 i+1
若先吃 i i i,后吃 i + 1 i+1 i+1,则得到的能量为 E i ′ + E i + 1 ′ − S i ∗ L i + 1 Ei '+Ei+1'-Si*Li+1 Ei+Ei+1SiLi+1 i i i 目前能量加上 i + 1 i+1 i+1 目前能量减去吃 i i i 所花费时间下 石头 i + 1 i+1 i+1 损耗的能量)
若先吃 i + 1 i+1 i+1,后吃 i i i,则得到的能量为 E i ′ + E i + 1 ′ − S i + 1 ∗ L i Ei '+Ei+1'-Si+1*Li Ei+Ei+1Si+1Li i i i 目前能量加上 i + 1 i+1 i+1 目前能量减去吃 i + 1 i+1 i+1 所花费时间下 石头 i i i 损耗的能量)

对比上述两个式子,
E i ′ + E i + 1 ′ − S i ∗ L i + 1 > E i ′ + E i + 1 ′ − S i + 1 ∗ L i Ei '+Ei+1' −Si∗Li+1>Ei '+Ei+1'-Si+1*Li Ei+Ei+1SiLi+1>Ei+Ei+1Si+1Li 时,
S i ∗ L i + 1 < S i + 1 ∗ L i Si*Li+1<Si+1*Li SiLi+1<Si+1Li S i / S i + 1 < L i / L i + 1 Si/Si+1<Li/Li+1 Si/Si+1<Li/Li+1 时,
先吃 i i i 后吃 i + 1 i+1 i+1 获得的能量更高。
所以,我们选择先吃 i i i

综上,最优方案中,吃能量石的顺序一定遵循 S i / S i + 1 < L i / L i + 1 Si/Si+1<Li/Li+1 Si/Si+1<Li/Li+1

因此,在处理前,我们先将石头按照上述要求 排序

struct Stone{
    int s,e,l;
    //运算符'<'重载
    bool operator< (const Stone &W) const{
        return s*W.l<l*W.s;
    }
}stone[N];

(运算符重载不理解的可参考该篇博客C++对bool operator < (const p &a)const的运算符重载详解

要点2:状态计算

闫氏DP分析法

在这里插入图片描述
与01背包问题思考相似,01背包问题模型详解(点击链接跳转)

可得,状态转移计算方程为 f [ i , j ] = m a x ( f [ i − 1 , j ] , f [ i − 1 , j − s ] + e − ( j − s ) ∗ l ) f[i,j]=max(f[i-1,j],f[i-1,j-s]+e-(j-s)*l) f[i,j]=max(f[i1,j],f[i1,js]+e(js)l)

进行一维优化后得到 f [ j ] = m a x ( f [ j ] , f [ j − s ] + e − ( j − s ) ∗ l ) f[j]=max(f[j],f[j-s]+e-(j-s)*l) f[j]=max(f[j],f[js]+e(js)l)

完整代码

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=10010;
int n;
int f[N];
//能量石结构体
struct Stone{
    int s,e,l;  //吃掉能量石所花时间s;所得能量e;耗损能量l
    //运算符重载
    bool operator< (const Stone &W) const{
        return s*W.l<l*W.s;
    }
}stone[N];

int main(){
    int T;
    cin>>T;
    for(int C=1;C<=T;C++){
        int m=0;  //总时间
        cin>>n;
        //读入能量石属性
        for(int i=0;i<n;i++){
            int s,e,l;
            cin>>s>>e>>l;
            stone[i]={s,e,l};
            m+=s;
        }
        //排序
        sort(stone,stone+n);
        //初始化
        memset(f,-0x3f,sizeof f);
        f[0]=0;
        //遍历物品
        for(int i=0;i<n;i++){
            int s=stone[i].s,e=stone[i].e,l=stone[i].l;
            //遍历体积
            for(int j=m;j>=s;j--)
                f[j]=max(f[j],f[j-s]+e-(j-s)*l);  //状态计算
        }
        int res=0;
        for(int i=0;i<=m;i++) res=max(res,f[i]);  //f中的最大值为最终答案
        printf("Case #%d: %d\n",C,res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值