握手问题 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

握手问题

题目来源

第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

原题链接

蓝桥杯 握手问题

问题描述

问题分析

算法思路分析:

  1. 问题描述

    • 总共有 50 人参加会议,每个人需要与其他 49 人握手一次。
    • 但有 7 个人彼此之间没有握手(这 7 人之间没有握手,但他们与其他 43 人握手)。
    • 需要计算实际发生的握手次数。
  2. 握手总数计算

    • 如果没有限制,50 人之间总的握手次数为组合数 C ( 50 , 2 ) = 50 × 49 2 = 1225 C(50, 2) = \frac{50 \times 49}{2} = 1225 C(50,2)=250×49=1225
    • 但由于 7 人之间没有握手,需要减去这 7 人之间本应发生的握手次数 C ( 7 , 2 ) = 7 × 6 2 = 21 C(7, 2) = \frac{7 \times 6}{2} = 21 C(7,2)=27×6=21
  3. 代码实现

    • 代码通过累加 1 到 49 的和来计算 50 人之间的总握手次数(因为 1 + 2 + ⋯ + 49 = 49 × 50 2 = 1225 1 + 2 + \dots + 49 = \frac{49 \times 50}{2} = 1225 1+2++49=249×50=1225)。
    • 然后减去 1 到 6 的和(因为 1 + 2 + ⋯ + 6 = 6 × 7 2 = 21 1 + 2 + \dots + 6 = \frac{6 \times 7}{2} = 21 1+2++6=26×7=21),表示减去 7 人之间未发生的握手次数。
    • 最终结果为 1225 − 21 = 1204 1225 - 21 = 1204 122521=1204

代码解释:

  1. 计算总握手次数

    • 使用循环 for (int i = 1; i < 50; i++) 累加 1 到 49 的和,得到 50 人之间的总握手次数 1225。
  2. 减去未发生的握手次数

    • 使用循环 for (int i = 1; i < 7; i++) 累加 1 到 6 的和,得到 7 人之间未发生的握手次数 21。
    • 从总握手次数中减去 21,得到实际握手次数 1204。
  3. 输出结果

    • 使用 printf("%d", res); 输出最终的握手次数。

总结:

通过累加和减去的方式,高效计算实际发生的握手次数。


完整代码

#include <iostream>
using namespace std;

int main() {
    int res = 0;  // 定义结果变量 res,用于存储握手总次数

    // 计算 50 人之间的总握手次数
    // 1 + 2 + 3 + ... + 49 = 1225
    for (int i = 1; i < 50; i++) {
        res += i;
    }

    // 减去 7 人之间未发生的握手次数
    // 1 + 2 + 3 + ... + 6 = 21
    for (int i = 1; i < 7; i++) {
        res -= i;
    }

    // 输出最终的握手次数
    printf("%d", res);

    return 0;
}
### 第15届蓝桥杯C/C++B真题概述 第15届蓝桥杯C/C++B的比难度有所提升,旨在更全面地评估参者的编程能力和逻辑思维能力。以下是该事的部分典型题目及其解题思路: #### 握手问题 此题可以通过两种方法求解: - **合数学**:利用排列合的知识计算可能的握手次数。 - **暴力枚举**:通过遍历所有可能性来统计握手情况。 #### 小球反弹 对于小球反弹的问题,主要关注的是物理运动学中的反射原理以及边界条件处理[^2]。 #### 好数算法 采用暴力解法即可解决问题,并且在此场景下不会导致超时现象发生。具体实现涉及对给定范围内的整数逐一检验其是否满足特定性质。 #### R格式转换 R格式相关题目通常涉及到字符串操作或者模式匹配等内容,在解答这类问题时需注意输入输出格式的要求严格遵循题目描述。 #### 宝石合 应用唯一分解定理作为核心理论依据来进行设计解决方案,重点在于如何有效地将大数值拆分成若干质因数乘积形式并据此构建合理的算法框架。 #### 数字接龙游戏 运用深度优先搜索(DFS)策略探索所有可行路径直至找到符合条件的结果序列为止;期间要注意剪枝优化以提高效率减少不必要的运算量。 #### 拔河比安排 考虑团队成员力量分配均衡性等因素影响最终胜负关系,从而制定相应的模拟过程或贪心法则指导下的决策流程。 以上即为部分公开可得之第15届蓝桥杯C/C++B试题概览及对应解析方向。 ```cpp // 示例代码片段展示了一个简单的好数判断程序 #include <iostream> using namespace std; int main(){ int n; cin >> n; bool isGoodNumber = true; while(n != 0){ int digit = n % 10; if(digit == 3 || digit == 4 || digit == 7){ isGoodNumber = false; break; } n /= 10; } cout << (isGoodNumber ? "Yes" : "No") << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值