数字接龙 第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

数字接龙

题目来源

第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

原题链接

蓝桥杯 数字接龙 https://www.lanqiao.cn/problems/19712/learning/

问题描述

题目描述

小蓝最近迷上了一款名为《数字接龙》的迷宫游戏,游戏在一个大小为 n × n n \times n n×n 的格子棋盘上展开,其中每一个格子处都有着一个 0 ⋯ k − 1 0 \cdots k-1 0k1 之间的整数。游戏规则如下:

  1. 从左上角 ( 0 , 0 ) (0,0) (0,0) 处出发,目标是到达右下角 ( n − 1 , n − 1 ) (n-1,n-1) (n1,n1) 处的格子,每一步可以选择沿着水平 / 垂直 / 对角线方向移动到下一个格子。
  2. 对于路径经过的棋盘格子,按照经过的格子顺序,上面的数字组成的序列要满足: 0 , 1 , 2 , ⋯   , k − 1 , 0 , 1 , 2 , ⋯   , k − 1 , 0 , 1 , 2 ⋯ 0,1,2, \cdots ,k-1,0,1,2, \cdots ,k-1,0,1,2 \cdots 0,1,2,,k1,0,1,2,,k1,0,1,2
  3. 途中需要对棋盘上的每个格子恰好都经过一次(仅一次)。
  4. 路径中不可以出现交叉的线路。例如之前有从 ( 0 , 0 ) (0,0) (0,0) 移动到 ( 1 , 1 ) (1,1) (1,1),那么再从 ( 1 , 0 ) (1,0) (1,0) 移动到 ( 0 , 1 ) (0,1) (0,1) 线路就会交叉。

为了方便表示,我们对可以行进的所有八个方向进行了数字编号,如下图 2 2 2 所示;因此行进路径可以用一个包含 0 ⋯ 7 0 \cdots 7 07 之间的数字字符串表示,如下图 1 1 1 是一个迷宫示例,它所对应的答案就是: 41255214 41255214 41255214

现在请你帮小蓝规划出一条行进路径并将其输出。如果有多条路径,输出字典序最小的那一个;如果不存在任何一条路径,则输出 − 1 −1 1

输入格式

第一行包含两个整数 n , k n, k n,k
接下来输入 n n n 行,每行 n n n 个整数表示棋盘格子上的数字。

输出格式

输出一行表示答案。如果没有对应的路径,输出 − 1 -1 1

输入输出样例 #1

输入 #1

3 3
0 2 0
1 1 1
2 0 2

输出 #1

41255214

问题分析

完整代码

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;

const int N=11; // 定义棋盘的最大大小
int g[N][N]; // 存储棋盘上每个格子的数字
int n,m; // n: 棋盘大小,m: 数字范围
string ans,s; // ans: 最终路径,s: 当前路径
int dx[]={-1,-1,0,1,1,1,0,-1}; // 八个方向的x偏移量
int dy[]={0,1,1,1,0,-1,-1,-1}; // 八个方向的y偏移量
bool st[N][N]; // 标记格子是否被访问过
int path[N][N][N][N]; // 记录路径是否经过某两个格子之间的移动

// 检查从(a,b)移动到(c,d)是否会与已有路径交叉
bool checkcross(int a,int b,int c,int d){
    if(path[a][d][c][b]||path[c][b][a][d]) return false;
    return true;
}

// 深度优先搜索
void dfs(int sum,int x,int y,int u){
    if(sum>=n*n){ // 如果路径长度达到n*n
        if(x==n&&y==n&&(ans.empty()||s<ans)) ans=s; // 如果到达终点且路径字典序更小,则更新答案
        return;
    }
    for(int i=0;i<8;i++){ // 遍历八个方向
        int xx=x+dx[i],yy=y+dy[i]; // 计算下一个格子的坐标
        if(st[xx][yy]||xx<1||xx>n||yy<1||yy>n||g[xx][yy]!=(u+1)%m) continue; // 检查移动是否合法
        if(dx[i]&&dy[i]&&checkcross(x,y,xx,yy)==false) continue; // 检查是否交叉
        if(xx==n&&yy==n&&sum+1!=n*n) continue; // 如果到达终点但路径长度不足,则跳过
        st[xx][yy]=true; // 标记格子为已访问
        path[x][y][xx][yy]=true; // 记录路径
        s+=(i+'0'); // 更新当前路径字符串
        dfs(sum+1,xx,yy,g[xx][yy]); // 继续递归搜索
        s.erase(s.size()-1,1); // 回溯,撤销路径字符串
        st[xx][yy]=false; // 回溯,撤销访问标记
        path[x][y][xx][yy]=false; // 回溯,撤销路径记录
    }
}

int main()
{
    scanf("%d%d",&n,&m); // 读取棋盘大小和数字范围
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            scanf("%d",&g[i][j]); // 读取棋盘上每个格子的数字
        }
    }
    st[1][1]=true; // 标记起点为已访问
    dfs(1,1,1,g[1][1]); // 开始深度优先搜索
    if(ans.empty()) printf("-1"); // 如果未找到路径,输出-1
    else cout<<ans; // 否则输出字典序最小的路径字符串
    return 0;
}

### 第15届蓝桥杯C/C++B真题概述 第15届蓝桥杯C/C++B的比难度有所提升,旨在更全面地评估参者的编程能力和逻辑思维能力。以下是该事的部分典型题目及其解题思路: #### 握手问题 此题可以通过两种方法求解: - **合数学**:利用排列合的知识计算可能的握手次数。 - **暴力枚举**:通过遍历所有可能性来统计握手情况。 #### 小球反弹 对于小球反弹的问题,主要关注的是物理运动学中的反射原理以及边界条件处理[^2]。 #### 好数算法 采用暴力解法即可解决问题,并且在此场景下不会导致超时现象发生。具体实现涉及对给定范围内的整数逐一检验其是否满足特定性质。 #### R格式转换 R格式相关题目通常涉及到字符串操作或者模式匹配等内容,在解答这类问题时需注意输入输出格式的要求严格遵循题目描述。 #### 宝石合 应用唯一分解定理作为核心理论依据来进行设计解决方案,重点在于如何有效地将大数值拆分成若干质因数乘积形式并据此构建合理的算法框架。 #### 数字接龙游戏 运用深度优先搜索(DFS)策略探索所有可行路径直至找到符合条件的结果序列为止;期间要注意剪枝优化以提高效率减少不必要的运算量。 #### 拔河比安排 考虑团队成员力量分配均衡性等因素影响最终胜负关系,从而制定相应的模拟过程或贪心法则指导下的决策流程。 以上即为部分公开可得之第15届蓝桥杯C/C++B试题概览及对应解析方向。 ```cpp // 示例代码片段展示了一个简单的好数判断程序 #include <iostream> using namespace std; int main(){ int n; cin >> n; bool isGoodNumber = true; while(n != 0){ int digit = n % 10; if(digit == 3 || digit == 4 || digit == 7){ isGoodNumber = false; break; } n /= 10; } cout << (isGoodNumber ? "Yes" : "No") << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值