以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],...,a[M] 和 B=b[1],...,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 No Solution
。
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
分析:只有在两个人说谎并且一个是狼人一个是平民时才有解,其他情况都无法确定狼人。所以依次假设两个狼人,如果符合要求则输出假设狼人的地址,并return 0。
代码:
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
int n;
cin >> n;
int *a = new int[n + 1];//存玩家说的话
int *b = new int[n + 1];//存储狼人和好人,-1狼人,1好人
a[0] = b[0] = 0;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= n; i++)
{
for (int j = i + 1; j <= n; j++)
{
for (int i1 = 1; i1 <= n; i1++)
b[i1] = 1;
int *c = new int[n];//存说谎的人/如果说谎的人是2人,并且一个人是狼人则有解
int t = 0;
b[i] = b[j] = -1;//假设i和j是狼人
for (int k = 1; k <= n; k++)
{
if (a[k] * b[abs(a[k])]<0)//说谎的人,和实际情况不同
c[t++] = k;
}
if (t == 2 && b[c[0]] + b[c[1]] == 0)//两个说谎的人,一个人是狼人一个是平民
{
cout << i << " " << j;
return 0;
}
}
}
cout << "No Solution" << endl;
return 0;
}