OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions

问题描述:

OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions

运行SparkStreming程序一段时间后,发现产生了异常:

19/06/26 03:05:30 ERROR JobScheduler: Error running job streaming job 1561518330000 ms.0
org.apache.spark.SparkException: Job aborted due to stage failure: Task 13 in stage 14895.0 failed 4 times, most recent failure: Lost task 13.3 in stage 14895.0 (TID 98327, 172.19.32.62, executor 0): org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {mytopic-3.3.1-0=3274}
	at org.apache.kafka.clients.consumer.internals.Fetcher.parseCompletedFetch(Fetcher.java:883)
	at 

①如果spark-streaming刚启动就报这个错误,则因为Kafka的retention expiration造成的

解决方法:

https://blog.csdn.net/xueba207/article/details/51174818

https://m.imooc.com/article/details?article_id=269193

②如果spark-streaming 运行一段时间之后出现该问题,通常这个问题也有可能是如下原因造成的

如果消息体太大了,超过 fetch.message.max.bytes=1m的默认配置,那么Spark-Streaming会直接抛出OffsetOutOfRangeException异常,然后停止服务。

解决方案:Kafka consumer中设置fetch.message.max.bytes为大一点的内存

#比如设置为50M:1024*1024*50
fetch.message.max.bytes=52428800
### YOLOv1 中 `IndexError: list index out of range` 错误解决方案 当遇到 `IndexError: list index out of range` 的错误时,通常意味着尝试访问列表中不存在的索引位置。对于YOLOv1模型中的这种情况,可能的原因在于预测张量(prediction tensor)的形状与预期不符。 #### 代码修正建议 为了防止此类错误发生,在操作prediction之前应该先验证其维度是否满足后续处理的要求: ```python import numpy as np import torch def add_center_offsets(prediction, num_anchors=5, grid_size=7, CUDA=False): # 验证输入数据的有效性 batch_size, _, _ = prediction.shape # 创建网格偏移 grid = np.arange(grid_size) a, b = np.meshgrid(grid, grid) x_offset = torch.FloatTensor(a).view(-1, 1) y_offset = torch.FloatTensor(b).view(-1, 1) if CUDA: x_offset = x_offset.cuda() y_offset = y_offset.cuda() x_y_offset = torch.cat((x_offset, y_offset), 1)\ .repeat(1, num_anchors)\ .view(-1, 2)\ .unsqueeze(0) # 扩展offsets以匹配batch size x_y_offset_batched = x_y_offset.expand(batch_size, -1, -1) # 更新predictions前再次确认尺寸兼容性 assert prediction[:, :, :2].shape == x_y_offset_batched.shape,\ "Shape mismatch between predictions and offsets" # 应用中心坐标偏移 prediction[:, :, :2] = x_y_offset_batched return prediction ``` 此函数通过引入额外的安全检查来确保不会因为不合适的索引而导致程序崩溃[^1]。此外,还增加了对批量大小的支持,并且在应用任何变换之前显式地扩展了偏移矩阵(`x_y_offset`)以便它可以应用于整个批次的数据上[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值