**
Description
**
**
Input
**
**
Output
**
**
Sample Input
**
5 4
4 2 -1 -1 3
**
Sample Output
**
4
**
HINT
**
**
Source
**
**
题解
**
那些没有被填上的数是递增的 可以自行脑补一下 比如任意两个数 前面的数的左面的部分 和后面的数右面的部分与这两个数的相对位置关系是没有关系的(怎么换 这两个数的影响是一样的 不会改变)
所以只与中间的那一部分的数有关系
然而对于中间的数我们来考虑一下
不妨设左面的那个数为a 右面那个数为b
且 a<=b
如果a在左面 a对中间产生的逆序对设为A个 中间对b产生的逆序对设为B个
让我们交换一下位置
由于a<=b 所以那A个与吧还是会产生逆序对 然而b>a 所以还可能会多那么一两个 同理于a
。。。。。。
所以我们可以得出结论——对于所有未知的数(-1),最后一定是不降的序列
然后就是动态规划了
dp[i][j]表示第i个未知填b的最少的逆序对 如果a[i]!=-1那么dp[i][j]=dp[i-1][j]
然而我太蒟……调DP的时候while(1)WA;了……(对了……可以有nk的算法 然而本蒟WA了几次之后果断弃疗……)
**
Code
**
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define inf 100000000
using namespace std;
const int maxn=10010;
int dp[maxn][110],n,k;
int a[maxn];
int sz[maxn][110],lz[maxn][110];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=k;j++)
{
sz[i][j]=sz[i-1][j]+(a[i-1]>j?1:0);
if(i!=1)lz[n-i+1][j]=lz[n-i+2][j]+((a[n-i+2]!=-1&&a[n-i+2]<j)?1:0);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=k;j++)
{
if(a[i]!=-1)
{
dp[i][j]=dp[i-1][j];
continue;
}
else
{
dp[i][j]=inf;
for(int l=1;l<=k;l++)
dp[i][j]=min(dp[i-1][l]+sz[i][j]+lz[i][j],dp[i][j]);
}
}
int ans=inf;
for(int i=1;i<=k;i++)ans=min(dp[n][i],ans);
for(int i=1;i<=n;i++)
if(a[i]!=-1)
ans+=sz[i][a[i]];
printf("%d",ans);
return 0;
}
——既然选择了远方,便只顾风雨兼程
欢迎各犇指正~