为什么说MySQL单表数据不要超过500万行

本文探讨了MySQL单表数据量何时需要分库分表,分析了2000万行与500万行标准的由来,并提出了根据实际情况评估的建议。同时提供了SQL优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人总结:

  1)如果单表容量大(大于2G),但是索引少(只通过主键ID查),性能也不会慢

  2)如果数据量大(大于500W),但是索引容量小(都是小字节字段),性能也不会慢

  3)所以,单表查询的性能取决于索引的大小(因为会放内存里),而索引的查询速度又受硬件的影响。

  4)建议:大表(数据量大、容量大)。先拆成主表(字段多)、detail表(容量高)。主表严格控制索引的质量,detail表只能用主键ID查(后期可以通过主键ID分表)。

以下是正文:

今天,探讨一个有趣的话题:MySQL 单表数据达到多少时才需要考虑分库分表?有人说 2000 万行,也有人说 500 万行。那么,你觉得这个数值多少才合适呢?

曾经在中国互联网技术圈广为流传着这么一个说法:MySQL 单表数据量大于 2000 万行,性能会明显下降。事实上,这个传闻据说最早起源于百度。具体情况大概是这样的,当年的 DBA 测试 MySQL性能时发现,当单表的量在 2000 万行量级的时候,SQL 操作的性能急剧下降,因此,结论由此而来。然后又据说百度的工程师流动到业界的其它公司,也带去了这个信息,所以,就在业界流传开这么一个说法。

再后来,阿里巴巴《Java 开发手册》提出单表行数超过 500 万行或者单表容量超过 2GB,才推荐进行分库分表。对此,有阿里的黄金铁律支撑,所以,很多人设计大数据存储时,多会以此为标准,进行分表操作。

那么,你觉得这个数值多少才合适呢?为什么不是 300 万行,或者是 800 万行,而是 500 万行?也许你会说这个可能就是阿里的最佳实战的数值吧?那么,问题又来了,这个数值是如何评估出来的呢?稍等片刻,请你小小思考一会儿。

事实上,这个数值和实际记录的条数无关,而与 MySQL 的配置以及机器的硬件有关。因为,MySQL 为了提高性能,会将表的索引装载到内存中。InnoDB buffer size 足够的情况下,其能完成全加载进内存,查询不会有问题。但是,当单表数据库到达某个量级的上限时,导致内存无法存储其索引,使得之后的 SQL 查询会产生磁盘 IO,从而导致性能下降。当然,这个还有具体的表结构的设计有关,最终导致的问题都是内存限制。这里,增加硬件配置,可能会带来立竿见影的性能提升哈。

那么,我对于分库分表的观点是,需要结合实际需求,不宜过度设计,在项目一开始不采用分库与分表设计,而是随着业务的增长,在无法继续优化的情况下,再考虑分库与分表提高系统的性能。对此,阿里巴巴《Java 开发手册》补充到:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。那么,回到一开始的问题,你觉得这个数值多少才合适呢?我的建议是,根据自身的机器的情况综合评估,如果心里没有标准,那么暂时以 500 万行作为一个统一的标准,相对而言算是一个比较折中的数值。

我们再来看一下关于SQL书写的一些注意点,会给大家带来帮助

sql的编写需要注意优化

  • 使用limit对查询结果的记录进行限定
  • 避免select *,将需要查找的字段列出来
  • 使用连接(join)来代替子查询
  • 拆分大的delete或insert语句
  • 可通过开启慢查询日志来找出较慢的SQL
  • 不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边
  • sql语句尽可能简单:一条sql只能在一个cpu运算;大语句拆小语句,减少锁时间;一条大sql可以堵死整个库
  • OR改写成IN:OR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内
  • 不用函数和触发器,在应用程序实现
  • 避免%xxx式查询
  • 少用JOIN
  • 使用同类型进行比较,比如用'123'和'123'比,123和123比
  • 尽量避免在WHERE子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描
  • 对于连续数值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5
  • 列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大
MySQL数据大于500时,需要考虑以下几个方面: 1. 数据库的选型:MySQL是一个开源的关系型数据库管理系统,可以应对大部分的数据存储需求。但是当数据超过500时,需要评估MySQL是否仍然能够满足性能需求,是否需要考虑其他高性能数据库或者分布式数据库方案。 2. 数据库的设计:优化数据库结构是提高性能的基础。可以考虑使用合适的数据类型和字段长度来节省存储空间,对经常查询的字段添加索引,避免使用过多的关联关系等。 3. 数据库索引的优化:合理的索引可以加速查询操作。在数据量大的情况下,需要根据实际查询需求,添加合适的索引。注意维护索引的代价和空间占用。 4. 数据分区:当数据超过500时,可以考虑将数据进行分区存储。根据数据的特性,可以按照日期、地理位置、用户等进行分区。分区可以提高查询性能,降低数据的维护成本。 5. 数据库服务器的优化:对数据库服务器进行性能优化可以有效提高查询性能。可以考虑调整数据库的缓存设置、线程池大小、网络连接数等参数,以及与硬件资源配套的优化等。 6. 数据备份和容灾:当数据量大时,数据备份和容灾变得尤为重要。需要定期进行数据备份,确保数据的安全性。同时可考虑使用数据库复制或者分布式数据库方案来实现高可用和故障恢复。 总之,当MySQL数据大于500时,需要综合考虑数据库的选型、结构设计、索引优化、数据分区、服务器优化、数据备份和容灾等方面,以提高查询性能和数据安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值