头歌最短路径

本文介绍如何使用Dijkstra算法求解给定有向图中,从特定源点到所有其他顶点的最短路径。通过实例展示输入格式和输出格式,并给出一个具体的样例进行解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个带权有向图G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为源。要计算从源到其他所有各顶点的最短路径长度。这里的长度就是指路上各边权之和。这个问题通常称为单源最短路径问题。利用Dijkstra算法计算图1中源点s到其他顶点的最短路径。

输入格式 第一行包含三个整数n,m,s分别表示点的个数、有向边的个数、出发点的编号。

接下来m行每行包含三个整数u,v,w 表示一条从u→v,长度为w的有向边。

输出格式 输出一行n个整数,第i个表示源点s到第i个点的最短路径,若不能达到则输出-9999.

输入样例

4 6 1

1 2 2

2 3 2

2 4 1

1 3 5

3 4 3

1 4 4

输出样例 0 2 4 3

import heapq

def dijkstra(n, m, s, edges):
    inf = float('inf')
    dist = [inf] * (n + 1)
    dist[s] = 0
    visited = [False] * (n + 1)
    heap = [(0, s)]
    while heap:
        (d, u) =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学不好python的小猫

感谢您的支持,我会长期更新我的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值