Day39 Golang (动态规划)62.不同路径63.不同路径 Ⅱ

文章介绍了两个函数,funcuniquePaths和funcuniquePathsWithObstacles,它们分别计算在给定网格中从(0,0)到(i,j)的不同路径数量,其中funcuniquePathsWithObstacles考虑了障碍格子。这两个函数利用动态规划的方法,通过遍历和递推公式来计算路径总数。
摘要由CSDN通过智能技术生成
func uniquePaths(m int, n int) int {
	// dp数组的含义:从(0,0)到(i,j)一共有多少种不同的走法
	dp := make([][]int, m) //例如m=2,n=3 [][]
	// 初始化dp数组:最上面和最左边初始值为1,因为只有一种走法
	for i := 0; i < m; i++ {
		dp[i] = make([]int, n)
		dp[i][0] = 1
	}
	for j := 0; j < n; j++ {
		dp[0][j] = 1
	}
	//遍历顺序为从左到右从上到下,注意i,j均从1开始
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			//递推公式
			dp[i][j] = dp[i-1][j] + dp[i][j-1]
		}
	}
	return dp[m-1][n-1]
}
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
	//如果起始位置或者终止位置有障碍则返回0
	m, n := len(obstacleGrid), len(obstacleGrid[0])
	if obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1 {
		return 0
	}
	// dp数组的含义:从(0,0)到(i,j)共有多少种走法
	dp := make([][]int, m)
	//注意这里要提前初始化二维数组
	for i := 0; i < m; i++ {
		dp[i] = make([]int, n)
		dp[i][0] = 0
	}
	//初始化dp数组,如果障碍出现在上边界或者左边界则之后的元素为0
	for i := 0; i < m && obstacleGrid[i][0] == 0; i++ {
		dp[i] = make([]int, n)
		dp[i][0] = 1
	}
	for j := 0; j < n && obstacleGrid[0][j] == 0; j++ {
		dp[0][j] = 1
	}
	//遍历顺序为从左到右从上到下,注意i,j均从1开始
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			//递推公式
			if obstacleGrid[i][j] == 0 {
				dp[i][j] = dp[i-1][j] + dp[i][j-1]
			}
		}
	}
	return dp[m-1][n-1]
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值