自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 基于支持向量机的分类预测

数据及背景link基于支持向量机的分类预测学习目标了解支持向量机的分类标准;了解支持向量机的软间隔分类;了解支持向量机的非线性核函数分类;理论知识1.1线性可分在二维空间上,两类点被一条直线完全分开叫做线性可分。严格的数学定义是:D0和 D1 是 n 维欧氏空间中的两个点集。如果存在 n 维向量 w 和实数 b,使得所有属于 D0的点xi都有 ,而对于所有属于D1的点 xj则有 ,则我们称D0和D1 线性可分。1.2 最大间隔超平面从二维扩展到多维空间中时,将D0和 D1

2020-08-26 16:20:16 1856

原创 基于决策树的分类预测

数据及背景link基于决策树的分类预测学习目标了解 决策树 的理论掌握 决策树 的 sklearn 函数调用使用并将其运用到企鹅分类理论知识1、决策树的伪代码决策树的构建过程是一个递归过程。函数存在三种返回状态:(1)当前节点包含的样本全部属于同一类别,无需继续划分;(2)当前属性集为空或者所有样本在某个属性上的取值相同,无法继续划分;(3)当前节点包含的样本集合为空,无法划分。2、划分选择从上述伪代码中我们发现,决策树的关键在于line6.从A中选择最优划分属性a∗​,一般我们

2020-08-22 11:05:55 2043 1

原创 机器学习算法(一): 基于逻辑回归的分类预测

数据及背景link(基于逻辑回归的分类预测)学习目标了解 逻辑回归 的理论掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测理论知识实践操作1、项目要求本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含

2020-08-19 13:49:34 825

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除