(1.5.2.1)求二进制数中1的个数

【解法三】

位操作比除、余操作的效率高了很多。但是,即使采用位操作,时间复杂度仍为O(log2v),log2v为二进制数的位数。那么,还能不能再降低一些复杂度呢?如果有办法让算法的复杂度只与"1"的个数有关,复杂度不就能进一步降低了吗?

同样用10 100 001来举例。如果只考虑和1的个数相关,那么,我们是否能够在每次判断中,仅与1来进行判断呢?

为了简化这个问题,我们考虑只有一个1的情况。例如:01 000 000。

如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个"1"进行判断,如何设计操作呢?我们知道的是,如果进行这个操作,结果为0或为1,就可以得到结论。

如果希望操作后的结果为0,01 000 000可以和00 111 111进行"与"操作。

这样,要进行的操作就是 01 000 000 &(01 000 000 - 00 000 001)= 01 000 000 &

00 111 111 = 0。

因此就有了解法三的代码:

代码清单2-3

 
 
  1. int Count(int v)  
  2. {  
  3.     int num = 0;  
  4.     while(v)  
  5.     {  
  6.         v &= (v-1);  
  7.         num++;  
  8.     }  
  9.     return num;  

对于一个字节(8bit)的变量,求其二进制表示中"1"的个数,要求算法的执行效率尽可能地高。

分析与解法

大多数的读者都会有这样的反应:这个题目也太简单了吧,解法似乎也相当地单一,不会有太多的曲折分析或者峰回路转之处。那么面试者到底能用这个题目考察我们什么呢?事实上,在编写程序的过程中,根据实际应用的不同,对存储空间或效率的要求也不一样。比如在PC上的程序编写与在嵌入式设备上的程序编写就有很大的差别。我们可以仔细思索一下如何才能使效率尽可能地"高"。

【解法一】

可以举一个八位的二进制例子来进行分析。对于二进制操作,我们知道,除以一个2,原来的数字将会减少一个0。如果除的过程中有余,那么就表示当前位置有一个1。

以10 100 010为例;

第一次除以2时,商为1 010 001,余为0。

第二次除以2时,商为101 000,余为1。

因此,可以考虑利用整型数据除法的特点,通过相除和判断余数的值来进行分析。于是有了如下的代码。

代码清单2-1

 
 
  1. int Count(int v)  
  2. {  
  3. int num = 0;  
  4. while(v)  
  5.     {  
  6.         if(v % 2 == 1)  
  7.     {  
  8.         num++;  
  9.     }  
  10.         v = v/ 2;  
  11.     }  
  12. return num;  

【解法二】使用位操作

前面的代码看起来比较复杂。我们知道,向右移位操作同样也可以达到相除的目的。唯一不同之处在于,移位之后如何来判断是否有1存在。对于这个问题,再来看看一个八位的数字:10 100 001。

在向右移位的过程中,我们会把最后一位直接丢弃。因此,需要判断最后一位是否为1,而"与"操作可以达到目的。可以把这个八位的数字与00000001进行"与"操作。如果结果为1,则表示当前八位数的最后一位为1,否则为0。代码如下:

代码清单2-2

 
 
  1. int Count(int v)  
  2. {  
  3.     int num = 0;  
  4.     While(v)  
  5.     {  
  6.         num += v &0x01;  
  7.         v >>= 1;  
  8.     }  
  9.     return num;  

【解法三】

位操作比除、余操作的效率高了很多。但是,即使采用位操作,时间复杂度仍为O(log2v),log2v为二进制数的位数。那么,还能不能再降低一些复杂度呢?如果有办法让算法的复杂度只与"1"的个数有关,复杂度不就能进一步降低了吗?

同样用10 100 001来举例。如果只考虑和1的个数相关,那么,我们是否能够在每次判断中,仅与1来进行判断呢?

为了简化这个问题,我们考虑只有一个1的情况。例如:01 000 000。

如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个"1"进行判断,如何设计操作呢?我们知道的是,如果进行这个操作,结果为0或为1,就可以得到结论。

如果希望操作后的结果为0,01 000 000可以和00 111 111进行"与"操作。

这样,要进行的操作就是 01 000 000 &(01 000 000 - 00 000 001)= 01 000 000 &

00 111 111 = 0。

因此就有了解法三的代码:

代码清单2-3

 
 
  1. int Count(int v)  
  2. {  
  3.     int num = 0;  
  4.     while(v)  
  5.     {  
  6.         v &= (v-1);  
  7.         num++;  
  8.     }  
  9.     return num;  

【解法四】使用分支操作

解法三的复杂度降低到O(M),其中M是v中1的个数,可能会有人已经很满足了,只用计算1的位数,这样应该够快了吧。然而我们说既然只有八位数据,索性直接把0~255的情况都罗列出来,并使用分支操作,可以得到答案,代码如下:

代码清单2-4

 
 
  1. int Count(int v)  
  2. {  
  3.     int num = 0;  
  4.     switch (v)  
  5.     {  
  6.         case 0x0:  
  7.             num = 0;  
  8.             break;  
  9.         case 0x1:  
  10.         case 0x2:  
  11.         case 0x4:  
  12.         case 0x8:  
  13.         case 0x10:  
  14.         case 0x20:  
  15.         case 0x40:  
  16.         case 0x80:  
  17.             num = 1;  
  18.             break;  
  19.         case 0x3:  
  20.         case 0x6:  
  21.         case 0xc:  
  22.         case 0x18:  
  23.         case 0x30:  
  24.         case 0x60:  
  25.         case 0xc0:  
  26.             num = 2;  
  27.             break;  
  28.             //...  
  29.     }  
  30.     return num;  

解法四看似很直接,但实际执行效率可能会低于解法二和解法三,因为分支语句的执行情况要看具体字节的值,如果a =0,那自然在第1个case就得出了答案,但是如果a =255,则要在最后一个case才得出答案,即在进行了255次比较操作之后!

看来,解法四不可取!但是解法四提供了一个思路,就是采用空间换时间的方法,罗列并直接给出值。如果需要快速地得到结果,可以利用空间或利用已知结论。这就好比已经知道计算1+2+ … +N的公式,在程序实现中就可以利用公式得到结论。

最后,得到解法五:算法中不需要进行任何的比较便可直接返回答案,这个解法在时间复杂度上应该能够让人高山仰止了。





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值