有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
分析:
用 **f[ i ][ j ]** 表示只看前i个物品,总体积是j的情况下,总价值最大是多少。
**v[ i ]** 表示第i个物体的体积, **w[ j ]** 表示第j个物体的价值
1.如果不选第i个物品,那么 **f[ i ][ j ] =f [ i -1][ j ]**
2.如果选第i个物品,那么 **f[ i ][ j ] =f[ i - 1][ j-v[ i ] ]+w[ i ]**
综上, **f[ i ][ j ] =max{ f [ i-1 ][ j ] , f[ i - 1 ][ j-v[ i ] ]+w[ i ] }**
代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N][N];
int v[N],w[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
{
for(int j=0;j<= m;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])
{
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
}
int res=0;
for(int i=0;i<=m;i++)res = max(res,f[n][i]);
cout<<res<<endl;
return 0;
}
优化如下:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N];
int v[N],w[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
f[j]=max(f[j],f[j-v[i]]+w[i]);
cout<<f[m]<<endl;
return 0;
}
本人错误写法:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N];
int v[N],w[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=v[i];j<=m;j++)
if(j-v[i]>0){f[j]=max(f[j],f[j-v[i]]+w[i]);}
cout<<f[m]<<endl;
return 0;
}
错误原因分析及心得:
f[j]依赖的是前一轮的结果 , 从后往前更新可以保证更新后的结果不影响后续更新,如果从前往后迭代的话 , 后面的更新用到的就不是上一轮的结果了,这里实际上是二维的空间复杂度优化了一下 , 导致看起来很奇怪。