算法笔记第四天 :01背包问题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

分析:

用 **f[ i ][ j ]** 表示只看前i个物品,总体积是j的情况下,总价值最大是多少。
		**v[ i ]** 表示第i个物体的体积, **w[ j ]** 表示第j个物体的价值
		1.如果不选第i个物品,那么 **f[ i ][ j ] =f [ i -1][ j ]**  
		2.如果选第i个物品,那么 **f[ i ][ j ] =f[ i - 1][ j-v[ i ] ]+w[ i ]**  
   	综上, **f[ i ][ j ] =max{ f [ i-1 ][ j ]  ,  f[ i - 1 ][ j-v[ i ] ]+w[ i ] }**

代码如下:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N][N];
int v[N],w[N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<= m;j++)
        {  
            f[i][j]=f[i-1][j];
            if(j>=v[i])
             {
                 f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);             
             }
        }
    }    
    int res=0;
    for(int i=0;i<=m;i++)res = max(res,f[n][i]);      
    cout<<res<<endl;
    return 0;
}

优化如下:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N];
int v[N],w[N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=m;j>=v[i];j--)
            f[j]=max(f[j],f[j-v[i]]+w[i]);
    cout<<f[m]<<endl;
    return 0;
}

本人错误写法:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000;
int n,m;
int f[N];
int v[N],w[N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=v[i];j<=m;j++)
            if(j-v[i]>0){f[j]=max(f[j],f[j-v[i]]+w[i]);}
    cout<<f[m]<<endl;
    return 0;
}

错误原因分析及心得:

f[j]依赖的是前一轮的结果 , 从后往前更新可以保证更新后的结果不影响后续更新如果从前往后迭代的话 , 后面的更新用到的就不是上一轮的结果了,这里实际上是二维的空间复杂度优化了一下 , 导致看起来很奇怪。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值