光学仿真

光学仿真三千问(讲人话)

(第零篇———傅里叶分解篇)

问题的由来:

本博主是一位年轻的96后;再一次工作中萌发了写报告的想法,后来觉得应该上传,于是有了这篇文章

红外仿真

2020.11.1来到了xxxx公司现在还在实习期,接手了第一个项目就是红外仿真(类似大作业考核),我接手的是红外仿真,接下来让我们走进红外的世界;

红外光?还是温度?

对于这个问题,我想说,红外肯定是光,但是它的特性可以由温度反应;说人话就是,温度变成辐射,探测器探测辐射能量转换为电流;解算;所以我们要清楚温度和辐射强度的关系:
1,啥是温度??
啥是温度,这居然也是个问题!现在我在办公室热的穿短袖,这问题有意义吗?
有!冷热只是我们的感觉,如何量化它呢?、、
dS=dQ/T;这是热力学熵和温度的关系,这完全是古典定义啊,反正你可以知道,T=dQ/dS;
dS是熵变,是运动剧烈程度,一片生机盎然;
dQ是热量改变量,是一个能量单位,向系统输入的能量;

      想象一个场景,我们向系统输入能量,结果系统的分布改变(粒子位置改变并停止),能量作用在改变分布上,能量在内部被释放,温度会上去吗?no!absolutily no! 温度是运动,而不是分布改变,那么我们应该说为了不让分布改变应该把这些分子按住,但这样他们就没法跑来跑去运动了,那你会问没法跑不运动怎末产生热呢?(分子运动);很简单“震动”!
   在自己位置上不停的震动,或者小幅度运动,被压抑的位置代表着一种被迫力对应着被迫能,这种被迫能是温度的直接来源,可以说温度就是在释放这种被迫能量,而dQ这种能量就是触发条件强度,也就是说!当dQ非常强时候它会破坏结构不让其震动(自由度开了),温度会在一瞬间上升之后又下降到比原来低的程度(ds突变小(运动速度造成)然后由于自由度变多ds变大);然后!就跑题了。。。。
   我们认识到了温度其实就是震动(有的震动里是包含直流分量的,加上各种频率),所以其实看着混乱(杯子里的分子运动叫布朗运动))其实可以分解各个频率震动,各个频率正交;

2,温度和辐射的关系:
温度和辐射有啥关系呢?你可能就知道。哦,正相关,让我们一起从零开始推导,我们从普朗克这个人说起!
普朗克,钢琴王者,“业余物理学者”,擅长函数拟合,硬是把韦恩和瑞丽揉在一起,搞出了普朗克公式这个玩意儿。
推到他其实也很简单!
说干就干!
假设能量不连续,是一份一份的,每份能量叫能量子hv,那么n份能量子就是nhv,(听着像个病毒!),假设一个粒子可能的能量为nhv,并且粒子数按照高斯分布(你懂的能量为零的粒子肯定最多,高能活跃分子毕竟少数),那么总能量就是如下:
在这里插入图片描述(祖师爷)
在这里插入图片描述下面分母就是总分布数,每一个求和项是nhv对应的分布数!
不解释了吧!
这样除以总数就是平均能量啦(老子就是懒!直接截图,你怎莫说)!

3,光和辐射的关系:
既然你已经知道温度的本质是震动,然后光也是一种震动;那么对于光它总要辐射能量,没错,光辐射能量就是一份一份的(准粒子化),让我来论证为啥一份份!
大家都学过电磁波理论的电势和矢势的波动方程,他们往往受制于边界条件解;
用人话说!!!:就是当波长为某一特殊数字时在边界强度刚好为零满足连续性条件(多捞啊),这样就必须是离散的波长满足而不是任意的,这样对应的频率就是离散的,而e=hv,这样能量就是一份一份的。
对于自由解,其实量子力学也没有归一化(任意频率),所以我们可以认为一切都是有边界条件的束缚解(束缚就是其他全同粒子!你总不能在其他粒子空间哪里有场!你别占据人家的地盘);
有点准粒子那味了;
那么光和辐射能的关系简单不过了:
直接就是nhv;

4,温度和光的关系:
光就是nhv了,用普朗克公式对所有频段积分;
然后就会有:斯特藩-玻尔兹曼定律:
在这里插入图片描述
在这里插入图片描述
跟温度成四次方比;

结论:测得光辐射通过四次方比得知温度;

希尔伯特空间:(人话!我会全部讲人话)

在这里插入图片描述
(希尔伯特)
现在暂时让我们进入一个新的篇章!!!
正交空间:顾名思义;正交空间,也即是,很多个非相关的基组成的完备空间,说人话如下:
假设,你想去描述一个人,那麽独一无二的它该如何描述:
1,可以用他的三维坐标去描述它,而这三个坐标是正交的,可以唯一组成她的信息,那麽他就被确定了;
2,除了坐标还有别的吗?有!就是他的其他唯一确定他的完备信息,比如气味,但是气味相同的人可能很多,除了气味,应该再继续筛选,比如身高,但也可能气味身高都一样,我们还需要比如DNA,这样“不相关的”因素;去描述它;这就是两种描述他的方式;
3,这两种方式可以唯一确定他的信息,但是他们有神马关系呢,也许可以通过某种方式转换就像极坐标和笛卡尔坐标的转换,对吗?这个变换就是基底变化(我不确定是不是这个专业名词!!),也可以说是状态变换,数学上叫做表象变换;
ok,我们都知道姿态转移矩阵是变换两个成一定夹角的坐标系;四维时这个旋转叫洛伦兹变换;
在这里插入图片描述
(姿态转移)
在这里插入图片描述
【洛伦兹变换,我们可以把洛伦兹变换写成一个矩阵转化,此时他便有了旋转的含义(不改变绝对值大小),只改变“方向”,有兴趣的读者可以把洛伦兹变换后的矢量做一个范数计算,说人话就是你把xyzt的平方和求一下加起来是一样的,那就说明不改变大小么(也就是洛伦兹矩阵是单位矩阵的变换); [ x ′ ; y ′ ; z ′ ; t ′ ] = [ 洛 伦 兹 矩 阵 ] ∗ [ x ; y ; z ; t ] [x';y';z';t']=[洛伦兹矩阵]*[x;y;z;t] [x;y;z;t]=[][x;y;z;t]麻烦你自己动手写一下,还能记得吗,,,,其实是我懒得写】
4,希尔伯特空间就是啥,就是不改变大小可以进行旋转平移的无限多个基底的空间,这些基地互相正交(就是没半毛钱关系),而且归一;
说白了就是你把三维加到无穷维度(我觉得这很人话);但要注意,人家希尔伯特可没说,你必须用“坐标最为基”,你甚至可以自己创造一组正交完备基,从而描述事件;洛伦兹

(洛伦兹,“什么事?”)

5,空间一定要旋转不变吗?
当人不是!非线性空间的转换会导致曲率,挠率

傅里叶基底:(我也不知道这样叫规范不规范)

正如上述,傅里叶干了个啥,就是找了一组基,正交归一;
e i w ′ t e^{iw't} eiwt
以上是他的基,以下是正交归一检测;
2 ∗ p i ∗ d i r a c ( w ′ − w ) = ∫ 0 ∞ e i w ′ t e − i w t d t   . 2*pi*dirac(w'-w)= \int_0^\infty e^{iw't}e^{-iwt}dt\,. 2pidirac(ww)=0eiwteiwtdt.

(内积就是乘以转置)

w=w’时;为2*pi;

w!=w’;为0;

好吧。。。正交未归一,那我们可以让每个基都除以sqrt(2*pi);这就归一了,仔细一看;
s q r t ( 2 ∗ p i ) ∗ e i w ′ t sqrt(2*pi)* e^{iw't} sqrt(2pi)eiwt这不正是傅里叶变化时候我们什么频域展开吗。
(我一直不明白,为啥我在本科(电子专业)他喵的不讲本质,讲一堆频率乱七八糟名词);
然后你就应该知道了,啥傅里叶变换吗不就是坐标空间转移到一个自己找的线性空间的表象旋转么,我们自己也可以造一个,我可以以我名字造一个邱变换,如下:
我的基:
无限循环的三角波,就是把正弦换成三角的样子,调整好振幅后也正交归一;
那么对于任何归一正交空间的变换都可以叫某某变换; 所以我一点也不愿意记住傅里叶啥的又不只有坐标和频率两个表象空间,个人找呗。

dft(离散傅里叶变换Discrete Fourier Transform):

虽然我们不必用傅里叶基,但是由于现实生活里的设备标准已经按照这个模式去建造了(底层),那我们就用吧,真捞;
对于工程上我们会遇到一个问题,就是我们在探测连续的信号时不可能真正的做到连续,连续只不过是人类感官对于“稠密流”的概念;对于一个稠密流,存在刘维尔定理下的守恒流,而我想说在这样的模型下流中的最小单元可能不是连续的,会有延迟效应!(这个我以后会开一个专门的篇章去讨论)
好了由于要去处理不连续的数据,我们的无限正交基地要变成有限的了,这可真是个遗憾;
也就是说,要去把不连续空间坐标映射成傅里叶基,当然有限不能映射无限,所以傅里叶基也是有限的;
这就是dft;

how to do?

因为之前的w是连续的无穷多的,那现在我们该怎么办呢?
这是dft问题的核心。
你知道有限多确定位置的事件,但不知道具体的频域位置,你纵然可以一个一个去内积但这无疑是愚蠢的!因为我们可以知道频率的具体个数和是那些频率;给你五分钟想想如何确定呢?

在这里插入图片描述

时间到!
公布答案:对于基地变换我们在满足正交空间性质也即是:
1.不同基内积为零;2.相同基的内积为1;
上述情况的时候我们在每个坐标转换时候,只要算子是对易的,就不会使得态分裂和简并,就可以一一对应;(我知道我再说非人话,马上说人话:)
人话:三维坐标旋转成新坐标系肯定也是三维的,n序列旋转到频域空间肯定也是n个频率;
唯一要注意的是!!!我们必须满足 “相同基的内积为1”,对于有限数列会有一些地方没有值,成为零矢量(此时还是无穷维度空间),我们通过平移相同序列到整个坐标上解析延拓它会使有两个效果;一来是我们的我们消灭了无穷维度空间剩余的零矢量(雅可比矩阵满秩),二是我们将无穷空间变成了最小生成元的周期函数,分析最小生成元即可;

所以dft有n个频点,具体都是几呢?要让n个k足以描述频率必须让他成为 k/n,k=0,1,2,…n-1; 即可,这样k=n时候就进入和k=0一样的情况,这样n个就是够的,完美;

fft(快速傅里叶变换):

有时候dft的采样太多,算起来贼慢,于是为了快速计算弄得算法,就只是快算;

matlab fft:

由于matlab有这个fft的函数,我们可以直接用,当然也可以自己写dft:
下面是我写(抄)的:

function [Xk] = mydft(xn)
   N=size(xn,2);
   j=sqrt(-1);
   n = [0:1:N-1];
   k = n;
   WN= exp(-j*2*pi/N);
   nk = n' * k;            
   Xk = xn(1:N) * WN.^nk; 
    function [xn] = myidft(Xk)
    j=sqrt(-1);
    N=size(Xk,2);
    n = [0:1:N-1];
    k = n;
    WN= exp(-j*2*pi/N);
    nk = n' * k;           
    xn = (Xk(1:N) * WN.^(-nk))/N;  

mydft目的是傅里叶变换;
就是你把你的数字序列输进来变成频谱序列;
myidft 是离散傅里叶变换;
就是把你的频谱谱序列书进来变成数字序列;
以下是我的尝试:图一是输入的序列图(看着是曲线其实是4001个序列);
图二是fft的之后图
图三是我的函数mydft之后图
在这里插入图片描述
(图一)
在这里插入图片描述(图二)

在这里插入图片描述(图三)

没什莫差别么。就是我的算的慢,毕竟人家是fft;

光学图像:

我们终于快要转出来了!!
看到这里的人都是真的猛士,真的探索者;
还记得我们的标题吗?
光学仿真三千问!
咱们是来讲光学的!快回来~~~大圣快收了神通吧!

红外辐射通过普朗克辐射自己的能量(然后跟温度有关),以连续的二维像素进入我们的探测器(不同方向不同光程的各个光线组成的二维平面图或者二维弯曲平面图),这个二维像素是无限稠密的,但我们没必要这么搞,我们可以把瞬时到达探测器镜头前的无限稠密像素(每个点都是辐射通量的值)变成一定大小的像素(分成nm的大小的矩阵),每个像素大小xy(m^2),对这个区域积分即可,就是这个区域的像素值,然后用灰度来计算,也就是分成256份,一份大小为(Vmax-Vmin)/256;其中V是辐射通量密度在x*y的大小的筛选区域的积分;
这样处理后的矩阵就是我们的图片矩阵;

matlab fft2:

对于图像的处理,或者说各种光学效应往往是卷积的,举个例子
在这里插入图片描述
下图就是psf,
在这里插入图片描述
也就是说通过光学系统的衍射,像差可能使得一个点光源(严格意义上是一个弥散小的光源发出的光)的光变成一个有范围的扩散;那每个位置都这样的话,我们需要对这些扩散再积分,令:
p s f ( n , m , v ) psf(n,m,v) psf(n,m,v)
为像素位置为n,m 辐射通量强度为v的点扩散函数,把一个光电弥散;
那么对于所有的nm,都有一个psf,我们需要把每一个位置psf后再叠加起来(这就是卷积):
p s f ( n , m , v ) ∗ p o s i t i o n ( x , y , v ) psf(n,m,v)*position(x,y,v) psf(n,m,v)position(x,y,v)

根据卷积定理;我们需要在空间上求出空间频率(不过这时候是二维)
然后把空间频谱点乘以psf的傅里叶变换(也是二维的)再二维反复叶变换就行;
(这样算据说快,我觉得还不如直接卷积本质,但肯定快因为矩阵点乘对像素多的很快);
自然而然我们就必须知道二维傅里叶变换;
也没啥,刚不是说了dft咱们是对一个数字序列变换,现在就是先对横方向的序列先变换,再对竖方向的变换;
你把刚才的程序套娃就行;
mydft(mydft());
myidft(myidft());
当然matlab里有fft2这个二维傅里叶变换的写好的函数,一个效果啦。
然后就是各种物理过程的卷积的故事了,我们的故事就先讲到这里;

讲人话——光学仿真三千问(第零篇傅里叶分解篇)完。

  • 8
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值