桶排序

#include <cstdio>
void swap(int *a, int *b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
int partition(int *a, int low, int high)
{
    int middle = (low + high)/2;
    for(int i=low,j=high; i<j; )
 {
        while(a[i] < a[middle]) ++i;
        if(i < j && i != middle)
  {
            swap(&a[i], &a[middle]);
            middle = i;
        }
        while(a[j] > a[middle]) --j;
        if(i < j && j != middle)
  {
            swap(&a[j], &a[middle]);
            middle = j;
        }
    }
    return middle;
}
void quicksort(int *a, int low, int high)
{
    int piovt_pos;
    if(low < high)
 {
        piovt_pos = partition(a, low, high);
        quicksort(a, low, piovt_pos - 1);
        quicksort(a, piovt_pos + 1, high);
    }
}
struct barrel
{
    int a[10];
    int count;
};
int main()
{
    int data[] = {23, 12, 3, 54, 1, 98, 24, 34};
    int min = data[0];
    int max = data[0];
    for(int i=1; i<sizeof(data)/sizeof(int); ++i)
 {
        min = min < data[i] ? min : data[i];
        max = max > data[i] ? max : data[i];
    }
    int num = (max - min + 1)/10 + 1;
    barrel *pBarrel = new barrel[num];
 for(int m = 0 ; m < num ;m++)
  pBarrel[m].count = 0 ;
    for(int i=0; i<sizeof(data)/sizeof(int); ++i)
 {
  int location = (data[i]-min+1)/10;
        int j = pBarrel[location].count;
        pBarrel[location].a[j] = data[i];
        pBarrel[location].count++;
    }
    static int pos = 0;
    for(int i=0; i<num; ++i)
 {
        quicksort((pBarrel+i)->a, 0, (pBarrel+i)->count-1);
        for(int j=0; j<(pBarrel+i)->count; ++j)
  {
            data[pos++] = (pBarrel+i)->a[j];
        }
    }
    for(int i=0; i<8; ++i)
 {
        printf("%d ", data[i]);
    }
    return 0;
}
 
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。  
  例如要对大小为[1..1000]范围内的n个整数A[1..n]排序  
  可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储  
  (10..20]的整数,……集合B[i]存储(   (i-1)*10,   i*10]的整数,i   =   1,2,..100。总共有  
  100个桶。  
  然后对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。  
  然后再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任  
  何排序法都可以。最后依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这  
  样就得到所有数字排好序的一个序列了。  
  假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果  
  对每个桶中的数字采用快速排序,那么整个算法的复杂度是  
  O(n   +   m   *   n/m*log(n/m))   =   O(n   +   nlogn   -   nlogm)  
  从上式看出,当m接近n的时候,桶排序复杂度接近O(n)  
  当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的  
  ,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的  
  排序了。  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值