#include <cstdio>
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
int partition(int *a, int low, int high)
{
int middle = (low + high)/2;
for(int i=low,j=high; i<j; )
{
while(a[i] < a[middle]) ++i;
if(i < j && i != middle)
{
swap(&a[i], &a[middle]);
middle = i;
}
while(a[j] > a[middle]) --j;
if(i < j && j != middle)
{
swap(&a[j], &a[middle]);
middle = j;
}
}
return middle;
}
void quicksort(int *a, int low, int high)
{
int piovt_pos;
if(low < high)
{
piovt_pos = partition(a, low, high);
quicksort(a, low, piovt_pos - 1);
quicksort(a, piovt_pos + 1, high);
}
}
struct barrel
{
int a[10];
int count;
};
int main()
{
int data[] = {23, 12, 3, 54, 1, 98, 24, 34};
int min = data[0];
int max = data[0];
for(int i=1; i<sizeof(data)/sizeof(int); ++i)
{
min = min < data[i] ? min : data[i];
max = max > data[i] ? max : data[i];
}
int num = (max - min + 1)/10 + 1;
barrel *pBarrel = new barrel[num];
for(int m = 0 ; m < num ;m++)
pBarrel[m].count = 0 ;
for(int i=0; i<sizeof(data)/sizeof(int); ++i)
{
int location = (data[i]-min+1)/10;
int j = pBarrel[location].count;
pBarrel[location].a[j] = data[i];
pBarrel[location].count++;
}
static int pos = 0;
for(int i=0; i<num; ++i)
{
quicksort((pBarrel+i)->a, 0, (pBarrel+i)->count-1);
for(int j=0; j<(pBarrel+i)->count; ++j)
{
data[pos++] = (pBarrel+i)->a[j];
}
}
for(int i=0; i<8; ++i)
{
printf("%d ", data[i]);
}
return 0;
}
void swap(int *a, int *b)
{
int temp = *a;
*a = *b;
*b = temp;
}
int partition(int *a, int low, int high)
{
int middle = (low + high)/2;
for(int i=low,j=high; i<j; )
{
while(a[i] < a[middle]) ++i;
if(i < j && i != middle)
{
swap(&a[i], &a[middle]);
middle = i;
}
while(a[j] > a[middle]) --j;
if(i < j && j != middle)
{
swap(&a[j], &a[middle]);
middle = j;
}
}
return middle;
}
void quicksort(int *a, int low, int high)
{
int piovt_pos;
if(low < high)
{
piovt_pos = partition(a, low, high);
quicksort(a, low, piovt_pos - 1);
quicksort(a, piovt_pos + 1, high);
}
}
struct barrel
{
int a[10];
int count;
};
int main()
{
int data[] = {23, 12, 3, 54, 1, 98, 24, 34};
int min = data[0];
int max = data[0];
for(int i=1; i<sizeof(data)/sizeof(int); ++i)
{
min = min < data[i] ? min : data[i];
max = max > data[i] ? max : data[i];
}
int num = (max - min + 1)/10 + 1;
barrel *pBarrel = new barrel[num];
for(int m = 0 ; m < num ;m++)
pBarrel[m].count = 0 ;
for(int i=0; i<sizeof(data)/sizeof(int); ++i)
{
int location = (data[i]-min+1)/10;
int j = pBarrel[location].count;
pBarrel[location].a[j] = data[i];
pBarrel[location].count++;
}
static int pos = 0;
for(int i=0; i<num; ++i)
{
quicksort((pBarrel+i)->a, 0, (pBarrel+i)->count-1);
for(int j=0; j<(pBarrel+i)->count; ++j)
{
data[pos++] = (pBarrel+i)->a[j];
}
}
for(int i=0; i<8; ++i)
{
printf("%d ", data[i]);
}
return 0;
}
简单来说,就是把数据分组,放在一个个的桶中,然后对每个桶里面的在进行排序。
例如要对大小为[1..1000]范围内的n个整数A[1..n]排序
可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储
(10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有
100个桶。
然后对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。
然后再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任
何排序法都可以。最后依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这
样就得到所有数字排好序的一个序列了。
假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果
对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n + m * n/m*log(n/m)) = O(n + nlogn - nlogm)
从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的
,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的
排序了。
例如要对大小为[1..1000]范围内的n个整数A[1..n]排序
可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储
(10..20]的整数,……集合B[i]存储( (i-1)*10, i*10]的整数,i = 1,2,..100。总共有
100个桶。
然后对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。
然后再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任
何排序法都可以。最后依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这
样就得到所有数字排好序的一个序列了。
假设有n个数字,有m个桶,如果数字是平均分布的,则每个桶里面平均有n/m个数字。如果
对每个桶中的数字采用快速排序,那么整个算法的复杂度是
O(n + m * n/m*log(n/m)) = O(n + nlogn - nlogm)
从上式看出,当m接近n的时候,桶排序复杂度接近O(n)
当然,以上复杂度的计算是基于输入的n个数字是平均分布这个假设的。这个假设是很强的
,实际应用中效果并没有这么好。如果所有的数字都落在同一个桶中,那就退化成一般的
排序了。